| /* |
| * Copyright (c) 2010-2011 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2001-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Ron Dreslinski |
| * Ali Saidi |
| */ |
| |
| #include <sys/mman.h> |
| #include <sys/types.h> |
| #include <sys/user.h> |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <zlib.h> |
| |
| #include <cerrno> |
| #include <cstdio> |
| #include <iostream> |
| #include <string> |
| |
| #include "arch/isa_traits.hh" |
| #include "arch/registers.hh" |
| #include "base/intmath.hh" |
| #include "base/misc.hh" |
| #include "base/random.hh" |
| #include "base/types.hh" |
| #include "config/the_isa.hh" |
| #include "debug/LLSC.hh" |
| #include "debug/MemoryAccess.hh" |
| #include "mem/packet_access.hh" |
| #include "mem/physical.hh" |
| #include "sim/eventq.hh" |
| |
| using namespace std; |
| using namespace TheISA; |
| |
| PhysicalMemory::PhysicalMemory(const Params *p) |
| : MemObject(p), pmemAddr(NULL), lat(p->latency), lat_var(p->latency_var), |
| _size(params()->range.size()), _start(params()->range.start) |
| { |
| if (size() % TheISA::PageBytes != 0) |
| panic("Memory Size not divisible by page size\n"); |
| |
| // create the appropriate number of ports |
| for (int i = 0; i < p->port_port_connection_count; ++i) { |
| ports.push_back(new MemoryPort(csprintf("%s-port%d", name(), i), |
| this)); |
| } |
| |
| if (params()->null) |
| return; |
| |
| |
| if (params()->file == "") { |
| int map_flags = MAP_ANON | MAP_PRIVATE; |
| pmemAddr = (uint8_t *)mmap(NULL, size(), |
| PROT_READ | PROT_WRITE, map_flags, -1, 0); |
| } else { |
| int map_flags = MAP_PRIVATE; |
| int fd = open(params()->file.c_str(), O_RDONLY); |
| _size = lseek(fd, 0, SEEK_END); |
| lseek(fd, 0, SEEK_SET); |
| pmemAddr = (uint8_t *)mmap(NULL, roundUp(size(), sysconf(_SC_PAGESIZE)), |
| PROT_READ | PROT_WRITE, map_flags, fd, 0); |
| } |
| |
| if (pmemAddr == (void *)MAP_FAILED) { |
| perror("mmap"); |
| if (params()->file == "") |
| fatal("Could not mmap!\n"); |
| else |
| fatal("Could not find file: %s\n", params()->file); |
| } |
| |
| //If requested, initialize all the memory to 0 |
| if (p->zero) |
| memset(pmemAddr, 0, size()); |
| } |
| |
| void |
| PhysicalMemory::init() |
| { |
| if (ports.empty()) { |
| fatal("PhysicalMemory object %s is unconnected!", name()); |
| } |
| |
| for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) { |
| (*pi)->sendRangeChange(); |
| } |
| } |
| |
| PhysicalMemory::~PhysicalMemory() |
| { |
| if (pmemAddr) |
| munmap((char*)pmemAddr, size()); |
| } |
| |
| void |
| PhysicalMemory::regStats() |
| { |
| using namespace Stats; |
| |
| bytesRead |
| .name(name() + ".bytes_read") |
| .desc("Number of bytes read from this memory") |
| ; |
| bytesInstRead |
| .name(name() + ".bytes_inst_read") |
| .desc("Number of instructions bytes read from this memory") |
| ; |
| bytesWritten |
| .name(name() + ".bytes_written") |
| .desc("Number of bytes written to this memory") |
| ; |
| numReads |
| .name(name() + ".num_reads") |
| .desc("Number of read requests responded to by this memory") |
| ; |
| numWrites |
| .name(name() + ".num_writes") |
| .desc("Number of write requests responded to by this memory") |
| ; |
| numOther |
| .name(name() + ".num_other") |
| .desc("Number of other requests responded to by this memory") |
| ; |
| bwRead |
| .name(name() + ".bw_read") |
| .desc("Total read bandwidth from this memory (bytes/s)") |
| .precision(0) |
| .prereq(bytesRead) |
| ; |
| bwInstRead |
| .name(name() + ".bw_inst_read") |
| .desc("Instruction read bandwidth from this memory (bytes/s)") |
| .precision(0) |
| .prereq(bytesInstRead) |
| ; |
| bwWrite |
| .name(name() + ".bw_write") |
| .desc("Write bandwidth from this memory (bytes/s)") |
| .precision(0) |
| .prereq(bytesWritten) |
| ; |
| bwTotal |
| .name(name() + ".bw_total") |
| .desc("Total bandwidth to/from this memory (bytes/s)") |
| .precision(0) |
| .prereq(bwTotal) |
| ; |
| bwRead = bytesRead / simSeconds; |
| bwInstRead = bytesInstRead / simSeconds; |
| bwWrite = bytesWritten / simSeconds; |
| bwTotal = (bytesRead + bytesWritten) / simSeconds; |
| } |
| |
| unsigned |
| PhysicalMemory::deviceBlockSize() const |
| { |
| //Can accept anysize request |
| return 0; |
| } |
| |
| Tick |
| PhysicalMemory::calculateLatency(PacketPtr pkt) |
| { |
| Tick latency = lat; |
| if (lat_var != 0) |
| latency += random_mt.random<Tick>(0, lat_var); |
| return latency; |
| } |
| |
| |
| |
| // Add load-locked to tracking list. Should only be called if the |
| // operation is a load and the LLSC flag is set. |
| void |
| PhysicalMemory::trackLoadLocked(PacketPtr pkt) |
| { |
| Request *req = pkt->req; |
| Addr paddr = LockedAddr::mask(req->getPaddr()); |
| |
| // first we check if we already have a locked addr for this |
| // xc. Since each xc only gets one, we just update the |
| // existing record with the new address. |
| list<LockedAddr>::iterator i; |
| |
| for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) { |
| if (i->matchesContext(req)) { |
| DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n", |
| req->contextId(), paddr); |
| i->addr = paddr; |
| return; |
| } |
| } |
| |
| // no record for this xc: need to allocate a new one |
| DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n", |
| req->contextId(), paddr); |
| lockedAddrList.push_front(LockedAddr(req)); |
| } |
| |
| |
| // Called on *writes* only... both regular stores and |
| // store-conditional operations. Check for conventional stores which |
| // conflict with locked addresses, and for success/failure of store |
| // conditionals. |
| bool |
| PhysicalMemory::checkLockedAddrList(PacketPtr pkt) |
| { |
| Request *req = pkt->req; |
| Addr paddr = LockedAddr::mask(req->getPaddr()); |
| bool isLLSC = pkt->isLLSC(); |
| |
| // Initialize return value. Non-conditional stores always |
| // succeed. Assume conditional stores will fail until proven |
| // otherwise. |
| bool success = !isLLSC; |
| |
| // Iterate over list. Note that there could be multiple matching |
| // records, as more than one context could have done a load locked |
| // to this location. |
| list<LockedAddr>::iterator i = lockedAddrList.begin(); |
| |
| while (i != lockedAddrList.end()) { |
| |
| if (i->addr == paddr) { |
| // we have a matching address |
| |
| if (isLLSC && i->matchesContext(req)) { |
| // it's a store conditional, and as far as the memory |
| // system can tell, the requesting context's lock is |
| // still valid. |
| DPRINTF(LLSC, "StCond success: context %d addr %#x\n", |
| req->contextId(), paddr); |
| success = true; |
| } |
| |
| // Get rid of our record of this lock and advance to next |
| DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n", |
| i->contextId, paddr); |
| i = lockedAddrList.erase(i); |
| } |
| else { |
| // no match: advance to next record |
| ++i; |
| } |
| } |
| |
| if (isLLSC) { |
| req->setExtraData(success ? 1 : 0); |
| } |
| |
| return success; |
| } |
| |
| |
| #if TRACING_ON |
| |
| #define CASE(A, T) \ |
| case sizeof(T): \ |
| DPRINTF(MemoryAccess,"%s of size %i on address 0x%x data 0x%x\n", \ |
| A, pkt->getSize(), pkt->getAddr(), pkt->get<T>()); \ |
| break |
| |
| |
| #define TRACE_PACKET(A) \ |
| do { \ |
| switch (pkt->getSize()) { \ |
| CASE(A, uint64_t); \ |
| CASE(A, uint32_t); \ |
| CASE(A, uint16_t); \ |
| CASE(A, uint8_t); \ |
| default: \ |
| DPRINTF(MemoryAccess, "%s of size %i on address 0x%x\n", \ |
| A, pkt->getSize(), pkt->getAddr()); \ |
| DDUMP(MemoryAccess, pkt->getPtr<uint8_t>(), pkt->getSize());\ |
| } \ |
| } while (0) |
| |
| #else |
| |
| #define TRACE_PACKET(A) |
| |
| #endif |
| |
| Tick |
| PhysicalMemory::doAtomicAccess(PacketPtr pkt) |
| { |
| assert(pkt->getAddr() >= start() && |
| pkt->getAddr() + pkt->getSize() <= start() + size()); |
| |
| if (pkt->memInhibitAsserted()) { |
| DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n", |
| pkt->getAddr()); |
| return 0; |
| } |
| |
| uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start(); |
| |
| if (pkt->cmd == MemCmd::SwapReq) { |
| IntReg overwrite_val; |
| bool overwrite_mem; |
| uint64_t condition_val64; |
| uint32_t condition_val32; |
| |
| if (!pmemAddr) |
| panic("Swap only works if there is real memory (i.e. null=False)"); |
| assert(sizeof(IntReg) >= pkt->getSize()); |
| |
| overwrite_mem = true; |
| // keep a copy of our possible write value, and copy what is at the |
| // memory address into the packet |
| std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize()); |
| std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize()); |
| |
| if (pkt->req->isCondSwap()) { |
| if (pkt->getSize() == sizeof(uint64_t)) { |
| condition_val64 = pkt->req->getExtraData(); |
| overwrite_mem = !std::memcmp(&condition_val64, hostAddr, |
| sizeof(uint64_t)); |
| } else if (pkt->getSize() == sizeof(uint32_t)) { |
| condition_val32 = (uint32_t)pkt->req->getExtraData(); |
| overwrite_mem = !std::memcmp(&condition_val32, hostAddr, |
| sizeof(uint32_t)); |
| } else |
| panic("Invalid size for conditional read/write\n"); |
| } |
| |
| if (overwrite_mem) |
| std::memcpy(hostAddr, &overwrite_val, pkt->getSize()); |
| |
| assert(!pkt->req->isInstFetch()); |
| TRACE_PACKET("Read/Write"); |
| numOther++; |
| } else if (pkt->isRead()) { |
| assert(!pkt->isWrite()); |
| if (pkt->isLLSC()) { |
| trackLoadLocked(pkt); |
| } |
| if (pmemAddr) |
| memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize()); |
| TRACE_PACKET(pkt->req->isInstFetch() ? "IFetch" : "Read"); |
| numReads++; |
| bytesRead += pkt->getSize(); |
| if (pkt->req->isInstFetch()) |
| bytesInstRead += pkt->getSize(); |
| } else if (pkt->isWrite()) { |
| if (writeOK(pkt)) { |
| if (pmemAddr) |
| memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize()); |
| assert(!pkt->req->isInstFetch()); |
| TRACE_PACKET("Write"); |
| numWrites++; |
| bytesWritten += pkt->getSize(); |
| } |
| } else if (pkt->isInvalidate()) { |
| //upgrade or invalidate |
| if (pkt->needsResponse()) { |
| pkt->makeAtomicResponse(); |
| } |
| } else { |
| panic("unimplemented"); |
| } |
| |
| if (pkt->needsResponse()) { |
| pkt->makeAtomicResponse(); |
| } |
| return calculateLatency(pkt); |
| } |
| |
| |
| void |
| PhysicalMemory::doFunctionalAccess(PacketPtr pkt) |
| { |
| assert(pkt->getAddr() >= start() && |
| pkt->getAddr() + pkt->getSize() <= start() + size()); |
| |
| |
| uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start(); |
| |
| if (pkt->isRead()) { |
| if (pmemAddr) |
| memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize()); |
| TRACE_PACKET("Read"); |
| pkt->makeAtomicResponse(); |
| } else if (pkt->isWrite()) { |
| if (pmemAddr) |
| memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize()); |
| TRACE_PACKET("Write"); |
| pkt->makeAtomicResponse(); |
| } else if (pkt->isPrint()) { |
| Packet::PrintReqState *prs = |
| dynamic_cast<Packet::PrintReqState*>(pkt->senderState); |
| // Need to call printLabels() explicitly since we're not going |
| // through printObj(). |
| prs->printLabels(); |
| // Right now we just print the single byte at the specified address. |
| ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr); |
| } else { |
| panic("PhysicalMemory: unimplemented functional command %s", |
| pkt->cmdString()); |
| } |
| } |
| |
| |
| Port * |
| PhysicalMemory::getPort(const std::string &if_name, int idx) |
| { |
| if (if_name != "port") { |
| panic("PhysicalMemory::getPort: unknown port %s requested\n", if_name); |
| } |
| |
| if (idx >= static_cast<int>(ports.size())) { |
| panic("PhysicalMemory::getPort: unknown index %d requested\n", idx); |
| } |
| |
| return ports[idx]; |
| } |
| |
| PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name, |
| PhysicalMemory *_memory) |
| : SimpleTimingPort(_name, _memory), memory(_memory) |
| { } |
| |
| void |
| PhysicalMemory::MemoryPort::recvRangeChange() |
| { |
| // memory is a slave and thus should never have to worry about its |
| // neighbours address ranges |
| } |
| |
| AddrRangeList |
| PhysicalMemory::MemoryPort::getAddrRanges() |
| { |
| return memory->getAddrRanges(); |
| } |
| |
| AddrRangeList |
| PhysicalMemory::getAddrRanges() |
| { |
| AddrRangeList ranges; |
| ranges.push_back(RangeSize(start(), size())); |
| return ranges; |
| } |
| |
| unsigned |
| PhysicalMemory::MemoryPort::deviceBlockSize() const |
| { |
| return memory->deviceBlockSize(); |
| } |
| |
| Tick |
| PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt) |
| { |
| return memory->doAtomicAccess(pkt); |
| } |
| |
| void |
| PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt) |
| { |
| pkt->pushLabel(memory->name()); |
| |
| if (!queue.checkFunctional(pkt)) { |
| // Default implementation of SimpleTimingPort::recvFunctional() |
| // calls recvAtomic() and throws away the latency; we can save a |
| // little here by just not calculating the latency. |
| memory->doFunctionalAccess(pkt); |
| } |
| |
| pkt->popLabel(); |
| } |
| |
| unsigned int |
| PhysicalMemory::drain(Event *de) |
| { |
| int count = 0; |
| for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) { |
| count += (*pi)->drain(de); |
| } |
| |
| if (count) |
| changeState(Draining); |
| else |
| changeState(Drained); |
| return count; |
| } |
| |
| void |
| PhysicalMemory::serialize(ostream &os) |
| { |
| if (!pmemAddr) |
| return; |
| |
| gzFile compressedMem; |
| string filename = name() + ".physmem"; |
| |
| SERIALIZE_SCALAR(filename); |
| SERIALIZE_SCALAR(_size); |
| |
| // write memory file |
| string thefile = Checkpoint::dir() + "/" + filename.c_str(); |
| int fd = creat(thefile.c_str(), 0664); |
| if (fd < 0) { |
| perror("creat"); |
| fatal("Can't open physical memory checkpoint file '%s'\n", filename); |
| } |
| |
| compressedMem = gzdopen(fd, "wb"); |
| if (compressedMem == NULL) |
| fatal("Insufficient memory to allocate compression state for %s\n", |
| filename); |
| |
| if (gzwrite(compressedMem, pmemAddr, size()) != (int)size()) { |
| fatal("Write failed on physical memory checkpoint file '%s'\n", |
| filename); |
| } |
| |
| if (gzclose(compressedMem)) |
| fatal("Close failed on physical memory checkpoint file '%s'\n", |
| filename); |
| |
| list<LockedAddr>::iterator i = lockedAddrList.begin(); |
| |
| vector<Addr> lal_addr; |
| vector<int> lal_cid; |
| while (i != lockedAddrList.end()) { |
| lal_addr.push_back(i->addr); |
| lal_cid.push_back(i->contextId); |
| i++; |
| } |
| arrayParamOut(os, "lal_addr", lal_addr); |
| arrayParamOut(os, "lal_cid", lal_cid); |
| } |
| |
| void |
| PhysicalMemory::unserialize(Checkpoint *cp, const string §ion) |
| { |
| if (!pmemAddr) |
| return; |
| |
| gzFile compressedMem; |
| long *tempPage; |
| long *pmem_current; |
| uint64_t curSize; |
| uint32_t bytesRead; |
| const uint32_t chunkSize = 16384; |
| |
| string filename; |
| |
| UNSERIALIZE_SCALAR(filename); |
| |
| filename = cp->cptDir + "/" + filename; |
| |
| // mmap memoryfile |
| int fd = open(filename.c_str(), O_RDONLY); |
| if (fd < 0) { |
| perror("open"); |
| fatal("Can't open physical memory checkpoint file '%s'", filename); |
| } |
| |
| compressedMem = gzdopen(fd, "rb"); |
| if (compressedMem == NULL) |
| fatal("Insufficient memory to allocate compression state for %s\n", |
| filename); |
| |
| // unmap file that was mmapped in the constructor |
| // This is done here to make sure that gzip and open don't muck with our |
| // nice large space of memory before we reallocate it |
| munmap((char*)pmemAddr, size()); |
| |
| UNSERIALIZE_SCALAR(_size); |
| if (size() > params()->range.size()) |
| fatal("Memory size has changed! size %lld, param size %lld\n", |
| size(), params()->range.size()); |
| |
| pmemAddr = (uint8_t *)mmap(NULL, size(), |
| PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); |
| |
| if (pmemAddr == (void *)MAP_FAILED) { |
| perror("mmap"); |
| fatal("Could not mmap physical memory!\n"); |
| } |
| |
| curSize = 0; |
| tempPage = (long*)malloc(chunkSize); |
| if (tempPage == NULL) |
| fatal("Unable to malloc memory to read file %s\n", filename); |
| |
| /* Only copy bytes that are non-zero, so we don't give the VM system hell */ |
| while (curSize < size()) { |
| bytesRead = gzread(compressedMem, tempPage, chunkSize); |
| if (bytesRead == 0) |
| break; |
| |
| assert(bytesRead % sizeof(long) == 0); |
| |
| for (uint32_t x = 0; x < bytesRead / sizeof(long); x++) |
| { |
| if (*(tempPage+x) != 0) { |
| pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long)); |
| *pmem_current = *(tempPage+x); |
| } |
| } |
| curSize += bytesRead; |
| } |
| |
| free(tempPage); |
| |
| if (gzclose(compressedMem)) |
| fatal("Close failed on physical memory checkpoint file '%s'\n", |
| filename); |
| |
| vector<Addr> lal_addr; |
| vector<int> lal_cid; |
| arrayParamIn(cp, section, "lal_addr", lal_addr); |
| arrayParamIn(cp, section, "lal_cid", lal_cid); |
| for(int i = 0; i < lal_addr.size(); i++) |
| lockedAddrList.push_front(LockedAddr(lal_addr[i], lal_cid[i])); |
| } |
| |
| PhysicalMemory * |
| PhysicalMemoryParams::create() |
| { |
| return new PhysicalMemory(this); |
| } |