blob: 098fe3bb2c7d4ff6ffee1e13d1a5bccce5da0089 [file] [log] [blame]
/*
* Copyright (c) 2011-2012, 2016-2018 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_THREAD_CONTEXT_HH__
#define __CPU_THREAD_CONTEXT_HH__
#include <iostream>
#include <string>
#include "arch/registers.hh"
#include "arch/types.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "cpu/reg_class.hh"
// @todo: Figure out a more architecture independent way to obtain the ITB and
// DTB pointers.
namespace TheISA
{
class Decoder;
}
class BaseCPU;
class BaseTLB;
class CheckerCPU;
class Checkpoint;
class EndQuiesceEvent;
class SETranslatingPortProxy;
class FSTranslatingPortProxy;
class PortProxy;
class Process;
class System;
namespace TheISA {
namespace Kernel {
class Statistics;
}
}
/**
* ThreadContext is the external interface to all thread state for
* anything outside of the CPU. It provides all accessor methods to
* state that might be needed by external objects, ranging from
* register values to things such as kernel stats. It is an abstract
* base class; the CPU can create its own ThreadContext by either
* deriving from it, or using the templated ProxyThreadContext.
*
* The ThreadContext is slightly different than the ExecContext. The
* ThreadContext provides access to an individual thread's state; an
* ExecContext provides ISA access to the CPU (meaning it is
* implicitly multithreaded on SMT systems). Additionally the
* ThreadState is an abstract class that exactly defines the
* interface; the ExecContext is a more implicit interface that must
* be implemented so that the ISA can access whatever state it needs.
*/
class ThreadContext
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::CCReg CCReg;
using VecRegContainer = TheISA::VecRegContainer;
using VecElem = TheISA::VecElem;
using VecPredRegContainer = TheISA::VecPredRegContainer;
public:
enum Status
{
/// Running. Instructions should be executed only when
/// the context is in this state.
Active,
/// Temporarily inactive. Entered while waiting for
/// synchronization, etc.
Suspended,
/// Permanently shut down. Entered when target executes
/// m5exit pseudo-instruction. When all contexts enter
/// this state, the simulation will terminate.
Halted
};
virtual ~ThreadContext() { };
virtual BaseCPU *getCpuPtr() = 0;
virtual int cpuId() const = 0;
virtual uint32_t socketId() const = 0;
virtual int threadId() const = 0;
virtual void setThreadId(int id) = 0;
virtual int contextId() const = 0;
virtual void setContextId(int id) = 0;
virtual BaseTLB *getITBPtr() = 0;
virtual BaseTLB *getDTBPtr() = 0;
virtual CheckerCPU *getCheckerCpuPtr() = 0;
virtual TheISA::Decoder *getDecoderPtr() = 0;
virtual System *getSystemPtr() = 0;
virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
virtual PortProxy &getPhysProxy() = 0;
virtual FSTranslatingPortProxy &getVirtProxy() = 0;
/**
* Initialise the physical and virtual port proxies and tie them to
* the data port of the CPU.
*
* tc ThreadContext for the virtual-to-physical translation
*/
virtual void initMemProxies(ThreadContext *tc) = 0;
virtual SETranslatingPortProxy &getMemProxy() = 0;
virtual Process *getProcessPtr() = 0;
virtual void setProcessPtr(Process *p) = 0;
virtual Status status() const = 0;
virtual void setStatus(Status new_status) = 0;
/// Set the status to Active.
virtual void activate() = 0;
/// Set the status to Suspended.
virtual void suspend() = 0;
/// Set the status to Halted.
virtual void halt() = 0;
/// Quiesce thread context
void quiesce();
/// Quiesce, suspend, and schedule activate at resume
void quiesceTick(Tick resume);
virtual void dumpFuncProfile() = 0;
virtual void takeOverFrom(ThreadContext *old_context) = 0;
virtual void regStats(const std::string &name) = 0;
virtual EndQuiesceEvent *getQuiesceEvent() = 0;
// Not necessarily the best location for these...
// Having an extra function just to read these is obnoxious
virtual Tick readLastActivate() = 0;
virtual Tick readLastSuspend() = 0;
virtual void profileClear() = 0;
virtual void profileSample() = 0;
virtual void copyArchRegs(ThreadContext *tc) = 0;
virtual void clearArchRegs() = 0;
//
// New accessors for new decoder.
//
virtual RegVal readIntReg(int reg_idx) = 0;
virtual RegVal readFloatReg(int reg_idx) = 0;
virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0;
virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0;
/** Vector Register Lane Interfaces. */
/** @{ */
/** Reads source vector 8bit operand. */
virtual ConstVecLane8
readVec8BitLaneReg(const RegId& reg) const = 0;
/** Reads source vector 16bit operand. */
virtual ConstVecLane16
readVec16BitLaneReg(const RegId& reg) const = 0;
/** Reads source vector 32bit operand. */
virtual ConstVecLane32
readVec32BitLaneReg(const RegId& reg) const = 0;
/** Reads source vector 64bit operand. */
virtual ConstVecLane64
readVec64BitLaneReg(const RegId& reg) const = 0;
/** Write a lane of the destination vector register. */
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::Byte>& val) = 0;
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::TwoByte>& val) = 0;
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::FourByte>& val) = 0;
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::EightByte>& val) = 0;
/** @} */
virtual const VecElem& readVecElem(const RegId& reg) const = 0;
virtual const VecPredRegContainer& readVecPredReg(const RegId& reg)
const = 0;
virtual VecPredRegContainer& getWritableVecPredReg(const RegId& reg) = 0;
virtual CCReg readCCReg(int reg_idx) = 0;
virtual void setIntReg(int reg_idx, RegVal val) = 0;
virtual void setFloatReg(int reg_idx, RegVal val) = 0;
virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0;
virtual void setVecElem(const RegId& reg, const VecElem& val) = 0;
virtual void setVecPredReg(const RegId& reg,
const VecPredRegContainer& val) = 0;
virtual void setCCReg(int reg_idx, CCReg val) = 0;
virtual TheISA::PCState pcState() = 0;
virtual void pcState(const TheISA::PCState &val) = 0;
void
setNPC(Addr val)
{
TheISA::PCState pc_state = pcState();
pc_state.setNPC(val);
pcState(pc_state);
}
virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;
virtual Addr instAddr() = 0;
virtual Addr nextInstAddr() = 0;
virtual MicroPC microPC() = 0;
virtual RegVal readMiscRegNoEffect(int misc_reg) const = 0;
virtual RegVal readMiscReg(int misc_reg) = 0;
virtual void setMiscRegNoEffect(int misc_reg, RegVal val) = 0;
virtual void setMiscReg(int misc_reg, RegVal val) = 0;
virtual RegId flattenRegId(const RegId& regId) const = 0;
virtual RegVal
readRegOtherThread(const RegId& misc_reg, ThreadID tid)
{
return 0;
}
virtual void
setRegOtherThread(const RegId& misc_reg, RegVal val, ThreadID tid)
{
}
// Also not necessarily the best location for these two. Hopefully will go
// away once we decide upon where st cond failures goes.
virtual unsigned readStCondFailures() = 0;
virtual void setStCondFailures(unsigned sc_failures) = 0;
// Same with st cond failures.
virtual Counter readFuncExeInst() = 0;
virtual void syscall(int64_t callnum, Fault *fault) = 0;
// This function exits the thread context in the CPU and returns
// 1 if the CPU has no more active threads (meaning it's OK to exit);
// Used in syscall-emulation mode when a thread calls the exit syscall.
virtual int exit() { return 1; };
/** function to compare two thread contexts (for debugging) */
static void compare(ThreadContext *one, ThreadContext *two);
/** @{ */
/**
* Flat register interfaces
*
* Some architectures have different registers visible in
* different modes. Such architectures "flatten" a register (see
* flattenRegId()) to map it into the
* gem5 register file. This interface provides a flat interface to
* the underlying register file, which allows for example
* serialization code to access all registers.
*/
virtual RegVal readIntRegFlat(int idx) = 0;
virtual void setIntRegFlat(int idx, RegVal val) = 0;
virtual RegVal readFloatRegFlat(int idx) = 0;
virtual void setFloatRegFlat(int idx, RegVal val) = 0;
virtual const VecRegContainer& readVecRegFlat(int idx) const = 0;
virtual VecRegContainer& getWritableVecRegFlat(int idx) = 0;
virtual void setVecRegFlat(int idx, const VecRegContainer& val) = 0;
virtual const VecElem& readVecElemFlat(const RegIndex& idx,
const ElemIndex& elemIdx) const = 0;
virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx,
const VecElem& val) = 0;
virtual const VecPredRegContainer& readVecPredRegFlat(int idx) const = 0;
virtual VecPredRegContainer& getWritableVecPredRegFlat(int idx) = 0;
virtual void setVecPredRegFlat(int idx,
const VecPredRegContainer& val) = 0;
virtual CCReg readCCRegFlat(int idx) = 0;
virtual void setCCRegFlat(int idx, CCReg val) = 0;
/** @} */
};
/**
* ProxyThreadContext class that provides a way to implement a
* ThreadContext without having to derive from it. ThreadContext is an
* abstract class, so anything that derives from it and uses its
* interface will pay the overhead of virtual function calls. This
* class is created to enable a user-defined Thread object to be used
* wherever ThreadContexts are used, without paying the overhead of
* virtual function calls when it is used by itself. See
* simple_thread.hh for an example of this.
*/
template <class TC>
class ProxyThreadContext : public ThreadContext
{
public:
ProxyThreadContext(TC *actual_tc)
{ actualTC = actual_tc; }
private:
TC *actualTC;
public:
BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
int cpuId() const { return actualTC->cpuId(); }
uint32_t socketId() const { return actualTC->socketId(); }
int threadId() const { return actualTC->threadId(); }
void setThreadId(int id) { actualTC->setThreadId(id); }
int contextId() const { return actualTC->contextId(); }
void setContextId(int id) { actualTC->setContextId(id); }
BaseTLB *getITBPtr() { return actualTC->getITBPtr(); }
BaseTLB *getDTBPtr() { return actualTC->getDTBPtr(); }
CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); }
TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); }
System *getSystemPtr() { return actualTC->getSystemPtr(); }
TheISA::Kernel::Statistics *getKernelStats()
{ return actualTC->getKernelStats(); }
PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); }
FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); }
void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); }
SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); }
Process *getProcessPtr() { return actualTC->getProcessPtr(); }
void setProcessPtr(Process *p) { actualTC->setProcessPtr(p); }
Status status() const { return actualTC->status(); }
void setStatus(Status new_status) { actualTC->setStatus(new_status); }
/// Set the status to Active.
void activate() { actualTC->activate(); }
/// Set the status to Suspended.
void suspend() { actualTC->suspend(); }
/// Set the status to Halted.
void halt() { actualTC->halt(); }
/// Quiesce thread context
void quiesce() { actualTC->quiesce(); }
/// Quiesce, suspend, and schedule activate at resume
void quiesceTick(Tick resume) { actualTC->quiesceTick(resume); }
void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
void takeOverFrom(ThreadContext *oldContext)
{ actualTC->takeOverFrom(oldContext); }
void regStats(const std::string &name) { actualTC->regStats(name); }
EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
Tick readLastActivate() { return actualTC->readLastActivate(); }
Tick readLastSuspend() { return actualTC->readLastSuspend(); }
void profileClear() { return actualTC->profileClear(); }
void profileSample() { return actualTC->profileSample(); }
// @todo: Do I need this?
void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
void clearArchRegs() { actualTC->clearArchRegs(); }
//
// New accessors for new decoder.
//
RegVal readIntReg(int reg_idx)
{ return actualTC->readIntReg(reg_idx); }
RegVal readFloatReg(int reg_idx)
{ return actualTC->readFloatReg(reg_idx); }
const VecRegContainer& readVecReg(const RegId& reg) const
{ return actualTC->readVecReg(reg); }
VecRegContainer& getWritableVecReg(const RegId& reg)
{ return actualTC->getWritableVecReg(reg); }
/** Vector Register Lane Interfaces. */
/** @{ */
/** Reads source vector 8bit operand. */
ConstVecLane8
readVec8BitLaneReg(const RegId& reg) const
{ return actualTC->readVec8BitLaneReg(reg); }
/** Reads source vector 16bit operand. */
ConstVecLane16
readVec16BitLaneReg(const RegId& reg) const
{ return actualTC->readVec16BitLaneReg(reg); }
/** Reads source vector 32bit operand. */
ConstVecLane32
readVec32BitLaneReg(const RegId& reg) const
{ return actualTC->readVec32BitLaneReg(reg); }
/** Reads source vector 64bit operand. */
ConstVecLane64
readVec64BitLaneReg(const RegId& reg) const
{ return actualTC->readVec64BitLaneReg(reg); }
/** Write a lane of the destination vector register. */
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::Byte>& val)
{ return actualTC->setVecLane(reg, val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::TwoByte>& val)
{ return actualTC->setVecLane(reg, val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::FourByte>& val)
{ return actualTC->setVecLane(reg, val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::EightByte>& val)
{ return actualTC->setVecLane(reg, val); }
/** @} */
const VecElem& readVecElem(const RegId& reg) const
{ return actualTC->readVecElem(reg); }
const VecPredRegContainer& readVecPredReg(const RegId& reg) const
{ return actualTC->readVecPredReg(reg); }
VecPredRegContainer& getWritableVecPredReg(const RegId& reg)
{ return actualTC->getWritableVecPredReg(reg); }
CCReg readCCReg(int reg_idx)
{ return actualTC->readCCReg(reg_idx); }
void setIntReg(int reg_idx, RegVal val)
{ actualTC->setIntReg(reg_idx, val); }
void setFloatReg(int reg_idx, RegVal val)
{ actualTC->setFloatReg(reg_idx, val); }
void setVecReg(const RegId& reg, const VecRegContainer& val)
{ actualTC->setVecReg(reg, val); }
void setVecPredReg(const RegId& reg, const VecPredRegContainer& val)
{ actualTC->setVecPredReg(reg, val); }
void setVecElem(const RegId& reg, const VecElem& val)
{ actualTC->setVecElem(reg, val); }
void setCCReg(int reg_idx, CCReg val)
{ actualTC->setCCReg(reg_idx, val); }
TheISA::PCState pcState() { return actualTC->pcState(); }
void pcState(const TheISA::PCState &val) { actualTC->pcState(val); }
void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); }
Addr instAddr() { return actualTC->instAddr(); }
Addr nextInstAddr() { return actualTC->nextInstAddr(); }
MicroPC microPC() { return actualTC->microPC(); }
bool readPredicate() { return actualTC->readPredicate(); }
void setPredicate(bool val)
{ actualTC->setPredicate(val); }
RegVal readMiscRegNoEffect(int misc_reg) const
{ return actualTC->readMiscRegNoEffect(misc_reg); }
RegVal readMiscReg(int misc_reg)
{ return actualTC->readMiscReg(misc_reg); }
void setMiscRegNoEffect(int misc_reg, RegVal val)
{ return actualTC->setMiscRegNoEffect(misc_reg, val); }
void setMiscReg(int misc_reg, RegVal val)
{ return actualTC->setMiscReg(misc_reg, val); }
RegId flattenRegId(const RegId& regId) const
{ return actualTC->flattenRegId(regId); }
unsigned readStCondFailures()
{ return actualTC->readStCondFailures(); }
void setStCondFailures(unsigned sc_failures)
{ actualTC->setStCondFailures(sc_failures); }
void syscall(int64_t callnum, Fault *fault)
{ actualTC->syscall(callnum, fault); }
Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
RegVal readIntRegFlat(int idx)
{ return actualTC->readIntRegFlat(idx); }
void setIntRegFlat(int idx, RegVal val)
{ actualTC->setIntRegFlat(idx, val); }
RegVal readFloatRegFlat(int idx)
{ return actualTC->readFloatRegFlat(idx); }
void setFloatRegFlat(int idx, RegVal val)
{ actualTC->setFloatRegFlat(idx, val); }
const VecRegContainer& readVecRegFlat(int id) const
{ return actualTC->readVecRegFlat(id); }
VecRegContainer& getWritableVecRegFlat(int id)
{ return actualTC->getWritableVecRegFlat(id); }
void setVecRegFlat(int idx, const VecRegContainer& val)
{ actualTC->setVecRegFlat(idx, val); }
const VecElem& readVecElemFlat(const RegIndex& id,
const ElemIndex& elemIndex) const
{ return actualTC->readVecElemFlat(id, elemIndex); }
void setVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex,
const VecElem& val)
{ actualTC->setVecElemFlat(id, elemIndex, val); }
const VecPredRegContainer& readVecPredRegFlat(int id) const
{ return actualTC->readVecPredRegFlat(id); }
VecPredRegContainer& getWritableVecPredRegFlat(int id)
{ return actualTC->getWritableVecPredRegFlat(id); }
void setVecPredRegFlat(int idx, const VecPredRegContainer& val)
{ actualTC->setVecPredRegFlat(idx, val); }
CCReg readCCRegFlat(int idx)
{ return actualTC->readCCRegFlat(idx); }
void setCCRegFlat(int idx, CCReg val)
{ actualTC->setCCRegFlat(idx, val); }
};
/** @{ */
/**
* Thread context serialization helpers
*
* These helper functions provide a way to the data in a
* ThreadContext. They are provided as separate helper function since
* implementing them as members of the ThreadContext interface would
* be confusing when the ThreadContext is exported via a proxy.
*/
void serialize(ThreadContext &tc, CheckpointOut &cp);
void unserialize(ThreadContext &tc, CheckpointIn &cp);
/** @} */
/**
* Copy state between thread contexts in preparation for CPU handover.
*
* @note This method modifies the old thread contexts as well as the
* new thread context. The old thread context will have its quiesce
* event descheduled if it is scheduled and its status set to halted.
*
* @param new_tc Destination ThreadContext.
* @param old_tc Source ThreadContext.
*/
void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);
#endif