blob: 6b93538beeafc83cbe12a68caad5571362d9360c [file] [log] [blame]
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#include <map>
#include "cpu/o3/mem_dep_unit.hh"
template <class MemDepPred, class Impl>
MemDepUnit<MemDepPred, Impl>::MemDepUnit(Params &params)
: depPred(params.SSITSize, params.LFSTSize)
{
DPRINTF(MemDepUnit, "MemDepUnit: Creating MemDepUnit object.\n");
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::regStats()
{
insertedLoads
.name(name() + ".memDep.insertedLoads")
.desc("Number of loads inserted to the mem dependence unit.");
insertedStores
.name(name() + ".memDep.insertedStores")
.desc("Number of stores inserted to the mem dependence unit.");
conflictingLoads
.name(name() + ".memDep.conflictingLoads")
.desc("Number of conflicting loads.");
conflictingStores
.name(name() + ".memDep.conflictingStores")
.desc("Number of conflicting stores.");
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::insert(DynInstPtr &inst)
{
InstSeqNum inst_seq_num = inst->seqNum;
Dependency unresolved_dependencies(inst_seq_num);
InstSeqNum producing_store = depPred.checkInst(inst->readPC());
if (producing_store == 0 ||
storeDependents.find(producing_store) == storeDependents.end()) {
DPRINTF(MemDepUnit, "MemDepUnit: No dependency for inst PC "
"%#x.\n", inst->readPC());
unresolved_dependencies.storeDep = storeDependents.end();
if (inst->readyToIssue()) {
readyInsts.insert(inst_seq_num);
} else {
unresolved_dependencies.memDepReady = true;
waitingInsts.insert(unresolved_dependencies);
}
} else {
DPRINTF(MemDepUnit, "MemDepUnit: Adding to dependency list; "
"inst PC %#x is dependent on seq num %i.\n",
inst->readPC(), producing_store);
if (inst->readyToIssue()) {
unresolved_dependencies.regsReady = true;
}
// Find the store that this instruction is dependent on.
sd_it_t store_loc = storeDependents.find(producing_store);
assert(store_loc != storeDependents.end());
// Record the location of the store that this instruction is
// dependent on.
unresolved_dependencies.storeDep = store_loc;
// If it's not already ready, then add it to the renamed
// list and the dependencies.
dep_it_t inst_loc =
(waitingInsts.insert(unresolved_dependencies)).first;
// Add this instruction to the list of dependents.
(*store_loc).second.push_back(inst_loc);
assert(!(*store_loc).second.empty());
if (inst->isLoad()) {
++conflictingLoads;
} else {
++conflictingStores;
}
}
if (inst->isStore()) {
DPRINTF(MemDepUnit, "MemDepUnit: Inserting store PC %#x.\n",
inst->readPC());
depPred.insertStore(inst->readPC(), inst_seq_num);
// Make sure this store isn't already in this list.
assert(storeDependents.find(inst_seq_num) == storeDependents.end());
// Put a dependency entry in at the store's sequence number.
// Uh, not sure how this works...I want to create an entry but
// I don't have anything to put into the value yet.
storeDependents[inst_seq_num];
assert(storeDependents.size() != 0);
++insertedStores;
} else if (inst->isLoad()) {
++insertedLoads;
} else {
panic("MemDepUnit: Unknown type! (most likely a barrier).");
}
memInsts[inst_seq_num] = inst;
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::insertNonSpec(DynInstPtr &inst)
{
InstSeqNum inst_seq_num = inst->seqNum;
Dependency non_spec_inst(inst_seq_num);
non_spec_inst.storeDep = storeDependents.end();
waitingInsts.insert(non_spec_inst);
// Might want to turn this part into an inline function or something.
// It's shared between both insert functions.
if (inst->isStore()) {
DPRINTF(MemDepUnit, "MemDepUnit: Inserting store PC %#x.\n",
inst->readPC());
depPred.insertStore(inst->readPC(), inst_seq_num);
// Make sure this store isn't already in this list.
assert(storeDependents.find(inst_seq_num) == storeDependents.end());
// Put a dependency entry in at the store's sequence number.
// Uh, not sure how this works...I want to create an entry but
// I don't have anything to put into the value yet.
storeDependents[inst_seq_num];
assert(storeDependents.size() != 0);
++insertedStores;
} else if (inst->isLoad()) {
++insertedLoads;
} else {
panic("MemDepUnit: Unknown type! (most likely a barrier).");
}
memInsts[inst_seq_num] = inst;
}
template <class MemDepPred, class Impl>
typename Impl::DynInstPtr &
MemDepUnit<MemDepPred, Impl>::top()
{
topInst = memInsts.find( (*readyInsts.begin()) );
DPRINTF(MemDepUnit, "MemDepUnit: Top instruction is PC %#x.\n",
(*topInst).second->readPC());
return (*topInst).second;
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::pop()
{
DPRINTF(MemDepUnit, "MemDepUnit: Removing instruction PC %#x.\n",
(*topInst).second->readPC());
wakeDependents((*topInst).second);
issue((*topInst).second);
memInsts.erase(topInst);
topInst = memInsts.end();
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::regsReady(DynInstPtr &inst)
{
DPRINTF(MemDepUnit, "MemDepUnit: Marking registers as ready for "
"instruction PC %#x.\n",
inst->readPC());
InstSeqNum inst_seq_num = inst->seqNum;
Dependency inst_to_find(inst_seq_num);
dep_it_t waiting_inst = waitingInsts.find(inst_to_find);
assert(waiting_inst != waitingInsts.end());
if ((*waiting_inst).memDepReady) {
DPRINTF(MemDepUnit, "MemDepUnit: Instruction has its memory "
"dependencies resolved, adding it to the ready list.\n");
moveToReady(waiting_inst);
} else {
DPRINTF(MemDepUnit, "MemDepUnit: Instruction still waiting on "
"memory dependency.\n");
(*waiting_inst).regsReady = true;
}
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::nonSpecInstReady(DynInstPtr &inst)
{
DPRINTF(MemDepUnit, "MemDepUnit: Marking non speculative "
"instruction PC %#x as ready.\n",
inst->readPC());
InstSeqNum inst_seq_num = inst->seqNum;
Dependency inst_to_find(inst_seq_num);
dep_it_t waiting_inst = waitingInsts.find(inst_to_find);
assert(waiting_inst != waitingInsts.end());
moveToReady(waiting_inst);
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::issue(DynInstPtr &inst)
{
assert(readyInsts.find(inst->seqNum) != readyInsts.end());
DPRINTF(MemDepUnit, "MemDepUnit: Issuing instruction PC %#x.\n",
inst->readPC());
// Remove the instruction from the ready list.
readyInsts.erase(inst->seqNum);
depPred.issued(inst->readPC(), inst->seqNum, inst->isStore());
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::wakeDependents(DynInstPtr &inst)
{
// Only stores have dependents.
if (!inst->isStore()) {
return;
}
// Wake any dependencies.
sd_it_t sd_it = storeDependents.find(inst->seqNum);
// If there's no entry, then return. Really there should only be
// no entry if the instruction is a load.
if (sd_it == storeDependents.end()) {
DPRINTF(MemDepUnit, "MemDepUnit: Instruction PC %#x, sequence "
"number %i has no dependents.\n",
inst->readPC(), inst->seqNum);
return;
}
for (int i = 0; i < (*sd_it).second.size(); ++i ) {
dep_it_t woken_inst = (*sd_it).second[i];
DPRINTF(MemDepUnit, "MemDepUnit: Waking up a dependent inst, "
"sequence number %i.\n",
(*woken_inst).seqNum);
#if 0
// Should we have reached instructions that are actually squashed,
// there will be no more useful instructions in this dependency
// list. Break out early.
if (waitingInsts.find(woken_inst) == waitingInsts.end()) {
DPRINTF(MemDepUnit, "MemDepUnit: Dependents on inst PC %#x "
"are squashed, starting at SN %i. Breaking early.\n",
inst->readPC(), woken_inst);
break;
}
#endif
if ((*woken_inst).regsReady) {
moveToReady(woken_inst);
} else {
(*woken_inst).memDepReady = true;
}
}
storeDependents.erase(sd_it);
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::squash(const InstSeqNum &squashed_num)
{
if (!waitingInsts.empty()) {
dep_it_t waiting_it = waitingInsts.end();
--waiting_it;
// Remove entries from the renamed list as long as we haven't reached
// the end and the entries continue to be younger than the squashed.
while (!waitingInsts.empty() &&
(*waiting_it).seqNum > squashed_num)
{
if (!(*waiting_it).memDepReady &&
(*waiting_it).storeDep != storeDependents.end()) {
sd_it_t sd_it = (*waiting_it).storeDep;
// Make sure the iterator that the store has pointing
// back is actually to this instruction.
assert((*sd_it).second.back() == waiting_it);
// Now remove this from the store's list of dependent
// instructions.
(*sd_it).second.pop_back();
}
waitingInsts.erase(waiting_it--);
}
}
if (!readyInsts.empty()) {
sn_it_t ready_it = readyInsts.end();
--ready_it;
// Same for the ready list.
while (!readyInsts.empty() &&
(*ready_it) > squashed_num)
{
readyInsts.erase(ready_it--);
}
}
if (!storeDependents.empty()) {
sd_it_t dep_it = storeDependents.end();
--dep_it;
// Same for the dependencies list.
while (!storeDependents.empty() &&
(*dep_it).first > squashed_num)
{
// This store's list of dependent instructions should be empty.
assert((*dep_it).second.empty());
storeDependents.erase(dep_it--);
}
}
// Tell the dependency predictor to squash as well.
depPred.squash(squashed_num);
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::violation(DynInstPtr &store_inst,
DynInstPtr &violating_load)
{
DPRINTF(MemDepUnit, "MemDepUnit: Passing violating PCs to store sets,"
" load: %#x, store: %#x\n", violating_load->readPC(),
store_inst->readPC());
// Tell the memory dependence unit of the violation.
depPred.violation(violating_load->readPC(), store_inst->readPC());
}
template <class MemDepPred, class Impl>
inline void
MemDepUnit<MemDepPred, Impl>::moveToReady(dep_it_t &woken_inst)
{
DPRINTF(MemDepUnit, "MemDepUnit: Adding instruction sequence number %i "
"to the ready list.\n", (*woken_inst).seqNum);
// Add it to the ready list.
readyInsts.insert((*woken_inst).seqNum);
// Remove it from the waiting instructions.
waitingInsts.erase(woken_inst);
}