blob: 26a916fc74699ada2a2f3f3837070daa644fcd57 [file] [log] [blame]
/*
* Copyright (c) 2010 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2007-2008 The Florida State University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Stephen Hines
*/
#include <sstream>
#include "arch/arm/insts/macromem.hh"
#include "arch/arm/generated/decoder.hh"
using namespace std;
using namespace ArmISAInst;
namespace ArmISA
{
MacroMemOp::MacroMemOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, IntRegIndex rn,
bool index, bool up, bool user, bool writeback,
bool load, uint32_t reglist) :
PredMacroOp(mnem, machInst, __opClass)
{
uint32_t regs = reglist;
uint32_t ones = number_of_ones(reglist);
// Remember that writeback adds a uop or two and the temp register adds one
numMicroops = ones + (writeback ? (load ? 2 : 1) : 0) + 1;
// It's technically legal to do a lot of nothing
if (!ones)
numMicroops = 1;
microOps = new StaticInstPtr[numMicroops];
uint32_t addr = 0;
if (!up)
addr = (ones << 2) - 4;
if (!index)
addr += 4;
StaticInstPtr *uop = microOps;
// Add 0 to Rn and stick it in ureg0.
// This is equivalent to a move.
*uop = new MicroAddiUop(machInst, INTREG_UREG0, rn, 0);
unsigned reg = 0;
unsigned regIdx = 0;
bool force_user = user & !bits(reglist, 15);
bool exception_ret = user & bits(reglist, 15);
for (int i = 0; i < ones; i++) {
// Find the next register.
while (!bits(regs, reg))
reg++;
replaceBits(regs, reg, 0);
regIdx = reg;
if (force_user) {
regIdx = intRegInMode(MODE_USER, regIdx);
}
if (load) {
if (writeback && i == ones - 1) {
// If it's a writeback and this is the last register
// do the load into a temporary register which we'll move
// into the final one later
*++uop = new MicroLdrUop(machInst, INTREG_UREG1, INTREG_UREG0,
up, addr);
} else {
// Otherwise just do it normally
if (reg == INTREG_PC && exception_ret) {
// This must be the exception return form of ldm.
*++uop = new MicroLdrRetUop(machInst, regIdx,
INTREG_UREG0, up, addr);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
} else {
*++uop = new MicroLdrUop(machInst, regIdx,
INTREG_UREG0, up, addr);
if (reg == INTREG_PC) {
(*uop)->setFlag(StaticInst::IsControl);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
}
}
}
} else {
*++uop = new MicroStrUop(machInst, regIdx, INTREG_UREG0, up, addr);
}
if (up)
addr += 4;
else
addr -= 4;
}
if (writeback && ones) {
// put the register update after we're done all loading
if (up)
*++uop = new MicroAddiUop(machInst, rn, rn, ones * 4);
else
*++uop = new MicroSubiUop(machInst, rn, rn, ones * 4);
// If this was a load move the last temporary value into place
// this way we can't take an exception after we update the base
// register.
if (load && reg == INTREG_PC && exception_ret) {
*++uop = new MicroUopRegMovRet(machInst, 0, INTREG_UREG1);
if (!(condCode == COND_AL || condCode == COND_UC))
(*uop)->setFlag(StaticInst::IsCondControl);
else
(*uop)->setFlag(StaticInst::IsUncondControl);
} else if (load) {
*++uop = new MicroUopRegMov(machInst, regIdx, INTREG_UREG1);
if (reg == INTREG_PC) {
(*uop)->setFlag(StaticInst::IsControl);
(*uop)->setFlag(StaticInst::IsCondControl);
(*uop)->setFlag(StaticInst::IsIndirectControl);
// This is created as a RAS POP
if (rn == INTREG_SP)
(*uop)->setFlag(StaticInst::IsReturn);
}
}
}
(*uop)->setLastMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
}
VldMultOp::VldMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
numMicroops = (regs > 2) ? 2 : 1;
bool wb = (rm != 15);
bool deinterleave = (elems > 1);
if (wb) numMicroops++;
if (deinterleave) numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
RegIndex rMid = deinterleave ? NumFloatArchRegs : vd * 2;
uint32_t noAlign = TLB::MustBeOne;
unsigned uopIdx = 0;
switch (regs) {
case 4:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 3:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 2:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
break;
case 1:
microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
size, machInst, rMid, rn, 0, align);
break;
default:
// Unknown number of registers
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, regs * 8);
}
}
if (deinterleave) {
switch (elems) {
case 4:
assert(regs == 4);
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon8Uop>(
size, machInst, vd * 2, rMid, inc * 2);
break;
case 3:
assert(regs == 3);
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon6Uop>(
size, machInst, vd * 2, rMid, inc * 2);
break;
case 2:
assert(regs == 4 || regs == 2);
if (regs == 4) {
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
size, machInst, vd * 2, rMid, inc * 2);
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
size, machInst, vd * 2 + 2, rMid + 4, inc * 2);
} else {
microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
size, machInst, vd * 2, rMid, inc * 2);
}
break;
default:
// Bad number of elements to deinterleave
microOps[uopIdx++] = new Unknown(machInst);
}
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
VldSingleOp::VldSingleOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool all, unsigned elems,
RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align,
RegIndex rm, unsigned lane) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
unsigned eBytes = (1 << size);
unsigned loadSize = eBytes * elems;
unsigned loadRegs M5_VAR_USED = (loadSize + sizeof(FloatRegBits) - 1) /
sizeof(FloatRegBits);
assert(loadRegs > 0 && loadRegs <= 4);
numMicroops = 1;
bool wb = (rm != 15);
if (wb) numMicroops++;
numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
RegIndex ufp0 = NumFloatArchRegs;
unsigned uopIdx = 0;
switch (loadSize) {
case 1:
microOps[uopIdx++] = new MicroLdrNeon1Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
if (eBytes == 2) {
microOps[uopIdx++] = new MicroLdrNeon2Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
} else {
microOps[uopIdx++] = new MicroLdrNeon2Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
}
break;
case 3:
microOps[uopIdx++] = new MicroLdrNeon3Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
switch (eBytes) {
case 1:
microOps[uopIdx++] = new MicroLdrNeon4Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
microOps[uopIdx++] = new MicroLdrNeon4Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroLdrNeon4Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 6:
microOps[uopIdx++] = new MicroLdrNeon6Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 8:
switch (eBytes) {
case 2:
microOps[uopIdx++] = new MicroLdrNeon8Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroLdrNeon8Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 12:
microOps[uopIdx++] = new MicroLdrNeon12Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
case 16:
microOps[uopIdx++] = new MicroLdrNeon16Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
default:
// Unrecognized load size
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, loadSize);
}
}
switch (elems) {
case 4:
assert(regs == 4);
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon4to8Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon4to8Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 3:
assert(regs == 3);
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon4to6Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon4to6Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 2:
assert(regs == 2);
assert(loadRegs <= 2);
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint8_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint16_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint32_t>(
machInst, vd * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 1:
assert(regs == 1 || (all && regs == 2));
assert(loadRegs <= 2);
for (unsigned offset = 0; offset < regs; offset++) {
switch (size) {
case 0:
if (all) {
microOps[uopIdx++] =
new MicroUnpackAllNeon2to2Uop<uint8_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] =
new MicroUnpackNeon2to2Uop<uint8_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
}
break;
case 1:
if (all) {
microOps[uopIdx++] =
new MicroUnpackAllNeon2to2Uop<uint16_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] =
new MicroUnpackNeon2to2Uop<uint16_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
}
break;
case 2:
if (all) {
microOps[uopIdx++] =
new MicroUnpackAllNeon2to2Uop<uint32_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2);
} else {
microOps[uopIdx++] =
new MicroUnpackNeon2to2Uop<uint32_t>(
machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
}
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
}
break;
default:
// Bad number of elements to unpack
microOps[uopIdx++] = new Unknown(machInst);
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
VstMultOp::VstMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
numMicroops = (regs > 2) ? 2 : 1;
bool wb = (rm != 15);
bool interleave = (elems > 1);
if (wb) numMicroops++;
if (interleave) numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
uint32_t noAlign = TLB::MustBeOne;
RegIndex rMid = interleave ? NumFloatArchRegs : vd * 2;
unsigned uopIdx = 0;
if (interleave) {
switch (elems) {
case 4:
assert(regs == 4);
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon8Uop>(
size, machInst, rMid, vd * 2, inc * 2);
break;
case 3:
assert(regs == 3);
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon6Uop>(
size, machInst, rMid, vd * 2, inc * 2);
break;
case 2:
assert(regs == 4 || regs == 2);
if (regs == 4) {
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
size, machInst, rMid, vd * 2, inc * 2);
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
size, machInst, rMid + 4, vd * 2 + 2, inc * 2);
} else {
microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
size, machInst, rMid, vd * 2, inc * 2);
}
break;
default:
// Bad number of elements to interleave
microOps[uopIdx++] = new Unknown(machInst);
}
}
switch (regs) {
case 4:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 3:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
size, machInst, rMid + 4, rn, 16, noAlign);
break;
case 2:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
size, machInst, rMid, rn, 0, align);
break;
case 1:
microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
size, machInst, rMid, rn, 0, align);
break;
default:
// Unknown number of registers
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, regs * 8);
}
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
VstSingleOp::VstSingleOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, bool all, unsigned elems,
RegIndex rn, RegIndex vd, unsigned regs,
unsigned inc, uint32_t size, uint32_t align,
RegIndex rm, unsigned lane) :
PredMacroOp(mnem, machInst, __opClass)
{
assert(!all);
assert(regs > 0 && regs <= 4);
assert(regs % elems == 0);
unsigned eBytes = (1 << size);
unsigned storeSize = eBytes * elems;
unsigned storeRegs M5_VAR_USED = (storeSize + sizeof(FloatRegBits) - 1) /
sizeof(FloatRegBits);
assert(storeRegs > 0 && storeRegs <= 4);
numMicroops = 1;
bool wb = (rm != 15);
if (wb) numMicroops++;
numMicroops += (regs / elems);
microOps = new StaticInstPtr[numMicroops];
RegIndex ufp0 = NumFloatArchRegs;
unsigned uopIdx = 0;
switch (elems) {
case 4:
assert(regs == 4);
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint8_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint16_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon8to4Uop<uint32_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 3:
assert(regs == 3);
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint8_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint16_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon6to4Uop<uint32_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 2:
assert(regs == 2);
assert(storeRegs <= 2);
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint8_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint16_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint32_t>(
machInst, ufp0, vd * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
break;
case 1:
assert(regs == 1 || (all && regs == 2));
assert(storeRegs <= 2);
for (unsigned offset = 0; offset < regs; offset++) {
switch (size) {
case 0:
microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint8_t>(
machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
break;
case 1:
microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint16_t>(
machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
break;
case 2:
microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint32_t>(
machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
break;
default:
// Bad size
microOps[uopIdx++] = new Unknown(machInst);
break;
}
}
break;
default:
// Bad number of elements to unpack
microOps[uopIdx++] = new Unknown(machInst);
}
switch (storeSize) {
case 1:
microOps[uopIdx++] = new MicroStrNeon1Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
if (eBytes == 2) {
microOps[uopIdx++] = new MicroStrNeon2Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
} else {
microOps[uopIdx++] = new MicroStrNeon2Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
}
break;
case 3:
microOps[uopIdx++] = new MicroStrNeon3Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
switch (eBytes) {
case 1:
microOps[uopIdx++] = new MicroStrNeon4Uop<uint8_t>(
machInst, ufp0, rn, 0, align);
break;
case 2:
microOps[uopIdx++] = new MicroStrNeon4Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroStrNeon4Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 6:
microOps[uopIdx++] = new MicroStrNeon6Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 8:
switch (eBytes) {
case 2:
microOps[uopIdx++] = new MicroStrNeon8Uop<uint16_t>(
machInst, ufp0, rn, 0, align);
break;
case 4:
microOps[uopIdx++] = new MicroStrNeon8Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
}
break;
case 12:
microOps[uopIdx++] = new MicroStrNeon12Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
case 16:
microOps[uopIdx++] = new MicroStrNeon16Uop<uint32_t>(
machInst, ufp0, rn, 0, align);
break;
default:
// Bad store size
microOps[uopIdx++] = new Unknown(machInst);
}
if (wb) {
if (rm != 15 && rm != 13) {
microOps[uopIdx++] =
new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
} else {
microOps[uopIdx++] =
new MicroAddiUop(machInst, rn, rn, storeSize);
}
}
assert(uopIdx == numMicroops);
for (unsigned i = 0; i < numMicroops - 1; i++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
microOps[numMicroops - 1]->setLastMicroop();
}
MacroVFPMemOp::MacroVFPMemOp(const char *mnem, ExtMachInst machInst,
OpClass __opClass, IntRegIndex rn,
RegIndex vd, bool single, bool up,
bool writeback, bool load, uint32_t offset) :
PredMacroOp(mnem, machInst, __opClass)
{
int i = 0;
// The lowest order bit selects fldmx (set) or fldmd (clear). These seem
// to be functionally identical except that fldmx is deprecated. For now
// we'll assume they're otherwise interchangable.
int count = (single ? offset : (offset / 2));
if (count == 0 || count > NumFloatArchRegs)
warn_once("Bad offset field for VFP load/store multiple.\n");
if (count == 0) {
// Force there to be at least one microop so the macroop makes sense.
writeback = true;
}
if (count > NumFloatArchRegs)
count = NumFloatArchRegs;
numMicroops = count * (single ? 1 : 2) + (writeback ? 1 : 0);
microOps = new StaticInstPtr[numMicroops];
int64_t addr = 0;
if (!up)
addr = 4 * offset;
bool tempUp = up;
for (int j = 0; j < count; j++) {
if (load) {
if (single) {
microOps[i++] = new MicroLdrFpUop(machInst, vd++, rn,
tempUp, addr);
} else {
microOps[i++] = new MicroLdrDBFpUop(machInst, vd++, rn,
tempUp, addr);
microOps[i++] = new MicroLdrDTFpUop(machInst, vd++, rn, tempUp,
addr + (up ? 4 : -4));
}
} else {
if (single) {
microOps[i++] = new MicroStrFpUop(machInst, vd++, rn,
tempUp, addr);
} else {
microOps[i++] = new MicroStrDBFpUop(machInst, vd++, rn,
tempUp, addr);
microOps[i++] = new MicroStrDTFpUop(machInst, vd++, rn, tempUp,
addr + (up ? 4 : -4));
}
}
if (!tempUp) {
addr -= (single ? 4 : 8);
// The microops don't handle negative displacement, so turn if we
// hit zero, flip polarity and start adding.
if (addr <= 0) {
tempUp = true;
addr = -addr;
}
} else {
addr += (single ? 4 : 8);
}
}
if (writeback) {
if (up) {
microOps[i++] =
new MicroAddiUop(machInst, rn, rn, 4 * offset);
} else {
microOps[i++] =
new MicroSubiUop(machInst, rn, rn, 4 * offset);
}
}
assert(numMicroops == i);
microOps[numMicroops - 1]->setLastMicroop();
for (StaticInstPtr *curUop = microOps;
!(*curUop)->isLastMicroop(); curUop++) {
MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
assert(uopPtr);
uopPtr->setDelayedCommit();
}
}
std::string
MicroIntImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printReg(ss, ura);
ss << ", ";
printReg(ss, urb);
ss << ", ";
ccprintf(ss, "#%d", imm);
return ss.str();
}
std::string
MicroSetPCCPSR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
ss << "[PC,CPSR]";
return ss.str();
}
std::string
MicroIntMov::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printReg(ss, ura);
ss << ", ";
printReg(ss, urb);
return ss.str();
}
std::string
MicroIntOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printReg(ss, ura);
ss << ", ";
printReg(ss, urb);
ss << ", ";
printReg(ss, urc);
return ss.str();
}
std::string
MicroMemOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
printMnemonic(ss);
printReg(ss, ura);
ss << ", [";
printReg(ss, urb);
ss << ", ";
ccprintf(ss, "#%d", imm);
ss << "]";
return ss.str();
}
}