blob: 04bc0ddc81403032ee6847d699834d9f72f8bfcc [file] [log] [blame]
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
* Copyright (c) 2007 The Hewlett-Packard Development Company
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
*/
#include "arch/x86/process.hh"
#include <string>
#include <vector>
#include "arch/x86/isa_traits.hh"
#include "arch/x86/regs/misc.hh"
#include "arch/x86/regs/segment.hh"
#include "arch/x86/system.hh"
#include "arch/x86/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/logging.hh"
#include "base/trace.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/multi_level_page_table.hh"
#include "mem/page_table.hh"
#include "params/Process.hh"
#include "sim/aux_vector.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_desc.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"
using namespace std;
using namespace X86ISA;
static const int ArgumentReg[] = {
INTREG_RDI,
INTREG_RSI,
INTREG_RDX,
// This argument register is r10 for syscalls and rcx for C.
INTREG_R10W,
// INTREG_RCX,
INTREG_R8W,
INTREG_R9W
};
static const int NumArgumentRegs M5_VAR_USED =
sizeof(ArgumentReg) / sizeof(const int);
static const int ArgumentReg32[] = {
INTREG_EBX,
INTREG_ECX,
INTREG_EDX,
INTREG_ESI,
INTREG_EDI,
INTREG_EBP
};
static const int NumArgumentRegs32 M5_VAR_USED =
sizeof(ArgumentReg) / sizeof(const int);
template class MultiLevelPageTable<LongModePTE<47, 39>,
LongModePTE<38, 30>,
LongModePTE<29, 21>,
LongModePTE<20, 12> >;
typedef MultiLevelPageTable<LongModePTE<47, 39>,
LongModePTE<38, 30>,
LongModePTE<29, 21>,
LongModePTE<20, 12> > ArchPageTable;
X86Process::X86Process(ProcessParams *params, ObjectFile *objFile,
SyscallDesc *_syscallDescs, int _numSyscallDescs)
: Process(params, params->useArchPT ?
static_cast<EmulationPageTable *>(
new ArchPageTable(params->name, params->pid,
params->system, PageBytes)) :
new EmulationPageTable(params->name, params->pid,
PageBytes),
objFile),
syscallDescs(_syscallDescs), numSyscallDescs(_numSyscallDescs)
{
}
void X86Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
Process *p, RegVal flags)
{
Process::clone(old_tc, new_tc, p, flags);
X86Process *process = (X86Process*)p;
*process = *this;
}
X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
SyscallDesc *_syscallDescs, int _numSyscallDescs)
: X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
{
vsyscallPage.base = 0xffffffffff600000ULL;
vsyscallPage.size = PageBytes;
vsyscallPage.vtimeOffset = 0x400;
vsyscallPage.vgettimeofdayOffset = 0x0;
Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
objFile->bssSize(), PageBytes);
Addr stack_base = 0x7FFFFFFFF000ULL;
Addr max_stack_size = 8 * 1024 * 1024;
Addr next_thread_stack_base = stack_base - max_stack_size;
Addr mmap_end = 0x7FFFF7FFF000ULL;
memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
next_thread_stack_base, mmap_end);
}
void
I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
{
TheISA::PCState pc = tc->pcState();
Addr eip = pc.pc();
if (eip >= vsyscallPage.base &&
eip < vsyscallPage.base + vsyscallPage.size) {
pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
tc->pcState(pc);
}
X86Process::syscall(callnum, tc, fault);
}
I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
SyscallDesc *_syscallDescs, int _numSyscallDescs)
: X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
{
_gdtStart = ULL(0xffffd000);
_gdtSize = PageBytes;
vsyscallPage.base = 0xffffe000ULL;
vsyscallPage.size = PageBytes;
vsyscallPage.vsyscallOffset = 0x400;
vsyscallPage.vsysexitOffset = 0x410;
Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
objFile->bssSize(), PageBytes);
Addr stack_base = _gdtStart;
Addr max_stack_size = 8 * 1024 * 1024;
Addr next_thread_stack_base = stack_base - max_stack_size;
Addr mmap_end = 0xB7FFF000ULL;
memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
next_thread_stack_base, mmap_end);
}
SyscallDesc*
X86Process::getDesc(int callnum)
{
if (callnum < 0 || callnum >= numSyscallDescs)
return NULL;
return &syscallDescs[callnum];
}
void
X86_64Process::initState()
{
X86Process::initState();
argsInit(PageBytes);
// Set up the vsyscall page for this process.
allocateMem(vsyscallPage.base, vsyscallPage.size);
uint8_t vtimeBlob[] = {
0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
0x0f,0x05, // syscall
0xc3 // retq
};
initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
vtimeBlob, sizeof(vtimeBlob));
uint8_t vgettimeofdayBlob[] = {
0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
0x0f,0x05, // syscall
0xc3 // retq
};
initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
if (kvmInSE) {
PortProxy physProxy = system->physProxy;
Addr syscallCodePhysAddr = system->allocPhysPages(1);
Addr gdtPhysAddr = system->allocPhysPages(1);
Addr idtPhysAddr = system->allocPhysPages(1);
Addr istPhysAddr = system->allocPhysPages(1);
Addr tssPhysAddr = system->allocPhysPages(1);
Addr pfHandlerPhysAddr = system->allocPhysPages(1);
/*
* Set up the gdt.
*/
uint8_t numGDTEntries = 0;
uint64_t nullDescriptor = 0;
physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
(uint8_t *)(&nullDescriptor), 8);
numGDTEntries++;
SegDescriptor initDesc = 0;
initDesc.type.codeOrData = 0; // code or data type
initDesc.type.c = 0; // conforming
initDesc.type.r = 1; // readable
initDesc.dpl = 0; // privilege
initDesc.p = 1; // present
initDesc.l = 1; // longmode - 64 bit
initDesc.d = 0; // operand size
initDesc.s = 1; // system segment
initDesc.limit = 0xFFFFFFFF;
initDesc.base = 0;
//64 bit code segment
SegDescriptor csLowPLDesc = initDesc;
csLowPLDesc.type.codeOrData = 1;
csLowPLDesc.dpl = 0;
uint64_t csLowPLDescVal = csLowPLDesc;
physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
(uint8_t *)(&csLowPLDescVal), 8);
numGDTEntries++;
SegSelector csLowPL = 0;
csLowPL.si = numGDTEntries - 1;
csLowPL.rpl = 0;
//64 bit data segment
SegDescriptor dsLowPLDesc = initDesc;
dsLowPLDesc.type.codeOrData = 0;
dsLowPLDesc.dpl = 0;
uint64_t dsLowPLDescVal = dsLowPLDesc;
physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
(uint8_t *)(&dsLowPLDescVal), 8);
numGDTEntries++;
SegSelector dsLowPL = 0;
dsLowPL.si = numGDTEntries - 1;
dsLowPL.rpl = 0;
//64 bit data segment
SegDescriptor dsDesc = initDesc;
dsDesc.type.codeOrData = 0;
dsDesc.dpl = 3;
uint64_t dsDescVal = dsDesc;
physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
(uint8_t *)(&dsDescVal), 8);
numGDTEntries++;
SegSelector ds = 0;
ds.si = numGDTEntries - 1;
ds.rpl = 3;
//64 bit code segment
SegDescriptor csDesc = initDesc;
csDesc.type.codeOrData = 1;
csDesc.dpl = 3;
uint64_t csDescVal = csDesc;
physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
(uint8_t *)(&csDescVal), 8);
numGDTEntries++;
SegSelector cs = 0;
cs.si = numGDTEntries - 1;
cs.rpl = 3;
SegSelector scall = 0;
scall.si = csLowPL.si;
scall.rpl = 0;
SegSelector sret = 0;
sret.si = dsLowPL.si;
sret.rpl = 3;
/* In long mode the TSS has been extended to 16 Bytes */
TSSlow TSSDescLow = 0;
TSSDescLow.type = 0xB;
TSSDescLow.dpl = 0; // Privelege level 0
TSSDescLow.p = 1; // Present
TSSDescLow.limit = 0xFFFFFFFF;
TSSDescLow.base = bits(TSSVirtAddr, 31, 0);
TSShigh TSSDescHigh = 0;
TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
struct TSSDesc {
uint64_t low;
uint64_t high;
} tssDescVal = {TSSDescLow, TSSDescHigh};
physProxy.writeBlob(gdtPhysAddr + numGDTEntries * 8,
(uint8_t *)(&tssDescVal), sizeof(tssDescVal));
numGDTEntries++;
SegSelector tssSel = 0;
tssSel.si = numGDTEntries - 1;
uint64_t tss_base_addr = (TSSDescHigh.base << 32) | TSSDescLow.base;
uint64_t tss_limit = TSSDescLow.limit;
SegAttr tss_attr = 0;
tss_attr.type = TSSDescLow.type;
tss_attr.dpl = TSSDescLow.dpl;
tss_attr.present = TSSDescLow.p;
tss_attr.granularity = TSSDescLow.g;
tss_attr.unusable = 0;
for (int i = 0; i < contextIds.size(); i++) {
ThreadContext * tc = system->getThreadContext(contextIds[i]);
tc->setMiscReg(MISCREG_CS, cs);
tc->setMiscReg(MISCREG_DS, ds);
tc->setMiscReg(MISCREG_ES, ds);
tc->setMiscReg(MISCREG_FS, ds);
tc->setMiscReg(MISCREG_GS, ds);
tc->setMiscReg(MISCREG_SS, ds);
// LDT
tc->setMiscReg(MISCREG_TSL, 0);
SegAttr tslAttr = 0;
tslAttr.present = 1;
tslAttr.type = 2;
tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
tc->setMiscReg(MISCREG_TR, tssSel);
tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
//Start using longmode segments.
installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
Efer efer = 0;
efer.sce = 1; // Enable system call extensions.
efer.lme = 1; // Enable long mode.
efer.lma = 1; // Activate long mode.
efer.nxe = 0; // Enable nx support.
efer.svme = 1; // Enable svm support for now.
efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
tc->setMiscReg(MISCREG_EFER, efer);
//Set up the registers that describe the operating mode.
CR0 cr0 = 0;
cr0.pg = 1; // Turn on paging.
cr0.cd = 0; // Don't disable caching.
cr0.nw = 0; // This is bit is defined to be ignored.
cr0.am = 1; // No alignment checking
cr0.wp = 1; // Supervisor mode can write read only pages
cr0.ne = 1;
cr0.et = 1; // This should always be 1
cr0.ts = 0; // We don't do task switching, so causing fp exceptions
// would be pointless.
cr0.em = 0; // Allow x87 instructions to execute natively.
cr0.mp = 1; // This doesn't really matter, but the manual suggests
// setting it to one.
cr0.pe = 1; // We're definitely in protected mode.
tc->setMiscReg(MISCREG_CR0, cr0);
CR0 cr2 = 0;
tc->setMiscReg(MISCREG_CR2, cr2);
CR3 cr3 = dynamic_cast<ArchPageTable *>(pTable)->basePtr();
tc->setMiscReg(MISCREG_CR3, cr3);
CR4 cr4 = 0;
//Turn on pae.
cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
cr4.pce = 0; // Performance-Monitoring Counter Enable
cr4.pge = 0; // Page-Global Enable
cr4.mce = 0; // Machine Check Enable
cr4.pae = 1; // Physical-Address Extension
cr4.pse = 0; // Page Size Extensions
cr4.de = 0; // Debugging Extensions
cr4.tsd = 0; // Time Stamp Disable
cr4.pvi = 0; // Protected-Mode Virtual Interrupts
cr4.vme = 0; // Virtual-8086 Mode Extensions
tc->setMiscReg(MISCREG_CR4, cr4);
CR4 cr8 = 0;
tc->setMiscReg(MISCREG_CR8, cr8);
tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
/* enabling syscall and sysret */
RegVal star = ((RegVal)sret << 48) | ((RegVal)scall << 32);
tc->setMiscReg(MISCREG_STAR, star);
RegVal lstar = (RegVal)syscallCodeVirtAddr;
tc->setMiscReg(MISCREG_LSTAR, lstar);
RegVal sfmask = (1 << 8) | (1 << 10); // TF | DF
tc->setMiscReg(MISCREG_SF_MASK, sfmask);
}
/* Set up the content of the TSS and write it to physical memory. */
struct {
uint32_t reserved0; // +00h
uint32_t RSP0_low; // +04h
uint32_t RSP0_high; // +08h
uint32_t RSP1_low; // +0Ch
uint32_t RSP1_high; // +10h
uint32_t RSP2_low; // +14h
uint32_t RSP2_high; // +18h
uint32_t reserved1; // +1Ch
uint32_t reserved2; // +20h
uint32_t IST1_low; // +24h
uint32_t IST1_high; // +28h
uint32_t IST2_low; // +2Ch
uint32_t IST2_high; // +30h
uint32_t IST3_low; // +34h
uint32_t IST3_high; // +38h
uint32_t IST4_low; // +3Ch
uint32_t IST4_high; // +40h
uint32_t IST5_low; // +44h
uint32_t IST5_high; // +48h
uint32_t IST6_low; // +4Ch
uint32_t IST6_high; // +50h
uint32_t IST7_low; // +54h
uint32_t IST7_high; // +58h
uint32_t reserved3; // +5Ch
uint32_t reserved4; // +60h
uint16_t reserved5; // +64h
uint16_t IO_MapBase; // +66h
} tss;
/** setting Interrupt Stack Table */
uint64_t IST_start = ISTVirtAddr + PageBytes;
tss.IST1_low = IST_start;
tss.IST1_high = IST_start >> 32;
tss.RSP0_low = tss.IST1_low;
tss.RSP0_high = tss.IST1_high;
tss.RSP1_low = tss.IST1_low;
tss.RSP1_high = tss.IST1_high;
tss.RSP2_low = tss.IST1_low;
tss.RSP2_high = tss.IST1_high;
physProxy.writeBlob(tssPhysAddr, (uint8_t *)(&tss), sizeof(tss));
/* Setting IDT gates */
GateDescriptorLow PFGateLow = 0;
PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
PFGateLow.selector = csLowPL;
PFGateLow.p = 1;
PFGateLow.dpl = 0;
PFGateLow.type = 0xe; // gate interrupt type
PFGateLow.IST = 0; // setting IST to 0 and using RSP0
GateDescriptorHigh PFGateHigh = 0;
PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
struct {
uint64_t low;
uint64_t high;
} PFGate = {PFGateLow, PFGateHigh};
physProxy.writeBlob(idtPhysAddr + 0xE0,
(uint8_t *)(&PFGate), sizeof(PFGate));
/* System call handler */
uint8_t syscallBlob[] = {
// mov %rax, (0xffffc90000005600)
0x48, 0xa3, 0x00, 0x60, 0x00,
0x00, 0x00, 0xc9, 0xff, 0xff,
// sysret
0x48, 0x0f, 0x07
};
physProxy.writeBlob(syscallCodePhysAddr,
syscallBlob, sizeof(syscallBlob));
/** Page fault handler */
uint8_t faultBlob[] = {
// mov %rax, (0xffffc90000005700)
0x48, 0xa3, 0x00, 0x61, 0x00,
0x00, 0x00, 0xc9, 0xff, 0xff,
// add $0x8, %rsp # skip error
0x48, 0x83, 0xc4, 0x08,
// iretq
0x48, 0xcf
};
physProxy.writeBlob(pfHandlerPhysAddr, faultBlob, sizeof(faultBlob));
/* Syscall handler */
pTable->map(syscallCodeVirtAddr, syscallCodePhysAddr,
PageBytes, false);
/* GDT */
pTable->map(GDTVirtAddr, gdtPhysAddr, PageBytes, false);
/* IDT */
pTable->map(IDTVirtAddr, idtPhysAddr, PageBytes, false);
/* TSS */
pTable->map(TSSVirtAddr, tssPhysAddr, PageBytes, false);
/* IST */
pTable->map(ISTVirtAddr, istPhysAddr, PageBytes, false);
/* PF handler */
pTable->map(PFHandlerVirtAddr, pfHandlerPhysAddr, PageBytes, false);
/* MMIO region for m5ops */
pTable->map(MMIORegionVirtAddr, MMIORegionPhysAddr,
16 * PageBytes, false);
} else {
for (int i = 0; i < contextIds.size(); i++) {
ThreadContext * tc = system->getThreadContext(contextIds[i]);
SegAttr dataAttr = 0;
dataAttr.dpl = 3;
dataAttr.unusable = 0;
dataAttr.defaultSize = 1;
dataAttr.longMode = 1;
dataAttr.avl = 0;
dataAttr.granularity = 1;
dataAttr.present = 1;
dataAttr.type = 3;
dataAttr.writable = 1;
dataAttr.readable = 1;
dataAttr.expandDown = 0;
dataAttr.system = 1;
// Initialize the segment registers.
for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
}
SegAttr csAttr = 0;
csAttr.dpl = 3;
csAttr.unusable = 0;
csAttr.defaultSize = 0;
csAttr.longMode = 1;
csAttr.avl = 0;
csAttr.granularity = 1;
csAttr.present = 1;
csAttr.type = 10;
csAttr.writable = 0;
csAttr.readable = 1;
csAttr.expandDown = 0;
csAttr.system = 1;
tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
Efer efer = 0;
efer.sce = 1; // Enable system call extensions.
efer.lme = 1; // Enable long mode.
efer.lma = 1; // Activate long mode.
efer.nxe = 1; // Enable nx support.
efer.svme = 0; // Disable svm support for now. It isn't implemented.
efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
tc->setMiscReg(MISCREG_EFER, efer);
// Set up the registers that describe the operating mode.
CR0 cr0 = 0;
cr0.pg = 1; // Turn on paging.
cr0.cd = 0; // Don't disable caching.
cr0.nw = 0; // This is bit is defined to be ignored.
cr0.am = 0; // No alignment checking
cr0.wp = 0; // Supervisor mode can write read only pages
cr0.ne = 1;
cr0.et = 1; // This should always be 1
cr0.ts = 0; // We don't do task switching, so causing fp exceptions
// would be pointless.
cr0.em = 0; // Allow x87 instructions to execute natively.
cr0.mp = 1; // This doesn't really matter, but the manual suggests
// setting it to one.
cr0.pe = 1; // We're definitely in protected mode.
tc->setMiscReg(MISCREG_CR0, cr0);
tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
}
}
}
void
I386Process::initState()
{
X86Process::initState();
argsInit(PageBytes);
/*
* Set up a GDT for this process. The whole GDT wouldn't really be for
* this process, but the only parts we care about are.
*/
allocateMem(_gdtStart, _gdtSize);
uint64_t zero = 0;
assert(_gdtSize % sizeof(zero) == 0);
for (Addr gdtCurrent = _gdtStart;
gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
initVirtMem.write(gdtCurrent, zero);
}
// Set up the vsyscall page for this process.
allocateMem(vsyscallPage.base, vsyscallPage.size);
uint8_t vsyscallBlob[] = {
0x51, // push %ecx
0x52, // push %edp
0x55, // push %ebp
0x89, 0xe5, // mov %esp, %ebp
0x0f, 0x34 // sysenter
};
initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
vsyscallBlob, sizeof(vsyscallBlob));
uint8_t vsysexitBlob[] = {
0x5d, // pop %ebp
0x5a, // pop %edx
0x59, // pop %ecx
0xc3 // ret
};
initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
vsysexitBlob, sizeof(vsysexitBlob));
for (int i = 0; i < contextIds.size(); i++) {
ThreadContext * tc = system->getThreadContext(contextIds[i]);
SegAttr dataAttr = 0;
dataAttr.dpl = 3;
dataAttr.unusable = 0;
dataAttr.defaultSize = 1;
dataAttr.longMode = 0;
dataAttr.avl = 0;
dataAttr.granularity = 1;
dataAttr.present = 1;
dataAttr.type = 3;
dataAttr.writable = 1;
dataAttr.readable = 1;
dataAttr.expandDown = 0;
dataAttr.system = 1;
// Initialize the segment registers.
for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
}
SegAttr csAttr = 0;
csAttr.dpl = 3;
csAttr.unusable = 0;
csAttr.defaultSize = 1;
csAttr.longMode = 0;
csAttr.avl = 0;
csAttr.granularity = 1;
csAttr.present = 1;
csAttr.type = 0xa;
csAttr.writable = 0;
csAttr.readable = 1;
csAttr.expandDown = 0;
csAttr.system = 1;
tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
// Set the LDT selector to 0 to deactivate it.
tc->setMiscRegNoEffect(MISCREG_TSL, 0);
Efer efer = 0;
efer.sce = 1; // Enable system call extensions.
efer.lme = 1; // Enable long mode.
efer.lma = 0; // Deactivate long mode.
efer.nxe = 1; // Enable nx support.
efer.svme = 0; // Disable svm support for now. It isn't implemented.
efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
tc->setMiscReg(MISCREG_EFER, efer);
// Set up the registers that describe the operating mode.
CR0 cr0 = 0;
cr0.pg = 1; // Turn on paging.
cr0.cd = 0; // Don't disable caching.
cr0.nw = 0; // This is bit is defined to be ignored.
cr0.am = 0; // No alignment checking
cr0.wp = 0; // Supervisor mode can write read only pages
cr0.ne = 1;
cr0.et = 1; // This should always be 1
cr0.ts = 0; // We don't do task switching, so causing fp exceptions
// would be pointless.
cr0.em = 0; // Allow x87 instructions to execute natively.
cr0.mp = 1; // This doesn't really matter, but the manual suggests
// setting it to one.
cr0.pe = 1; // We're definitely in protected mode.
tc->setMiscReg(MISCREG_CR0, cr0);
tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
}
}
template<class IntType>
void
X86Process::argsInit(int pageSize,
std::vector<AuxVector<IntType> > extraAuxvs)
{
int intSize = sizeof(IntType);
typedef AuxVector<IntType> auxv_t;
std::vector<auxv_t> auxv = extraAuxvs;
string filename;
if (argv.size() < 1)
filename = "";
else
filename = argv[0];
// We want 16 byte alignment
uint64_t align = 16;
// Patch the ld_bias for dynamic executables.
updateBias();
// load object file into target memory
objFile->loadSections(initVirtMem);
enum X86CpuFeature {
X86_OnboardFPU = 1 << 0,
X86_VirtualModeExtensions = 1 << 1,
X86_DebuggingExtensions = 1 << 2,
X86_PageSizeExtensions = 1 << 3,
X86_TimeStampCounter = 1 << 4,
X86_ModelSpecificRegisters = 1 << 5,
X86_PhysicalAddressExtensions = 1 << 6,
X86_MachineCheckExtensions = 1 << 7,
X86_CMPXCHG8Instruction = 1 << 8,
X86_OnboardAPIC = 1 << 9,
X86_SYSENTER_SYSEXIT = 1 << 11,
X86_MemoryTypeRangeRegisters = 1 << 12,
X86_PageGlobalEnable = 1 << 13,
X86_MachineCheckArchitecture = 1 << 14,
X86_CMOVInstruction = 1 << 15,
X86_PageAttributeTable = 1 << 16,
X86_36BitPSEs = 1 << 17,
X86_ProcessorSerialNumber = 1 << 18,
X86_CLFLUSHInstruction = 1 << 19,
X86_DebugTraceStore = 1 << 21,
X86_ACPIViaMSR = 1 << 22,
X86_MultimediaExtensions = 1 << 23,
X86_FXSAVE_FXRSTOR = 1 << 24,
X86_StreamingSIMDExtensions = 1 << 25,
X86_StreamingSIMDExtensions2 = 1 << 26,
X86_CPUSelfSnoop = 1 << 27,
X86_HyperThreading = 1 << 28,
X86_AutomaticClockControl = 1 << 29,
X86_IA64Processor = 1 << 30
};
// Setup the auxiliary vectors. These will already have endian
// conversion. Auxiliary vectors are loaded only for elf formatted
// executables; the auxv is responsible for passing information from
// the OS to the interpreter.
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if (elfObject) {
uint64_t features =
X86_OnboardFPU |
X86_VirtualModeExtensions |
X86_DebuggingExtensions |
X86_PageSizeExtensions |
X86_TimeStampCounter |
X86_ModelSpecificRegisters |
X86_PhysicalAddressExtensions |
X86_MachineCheckExtensions |
X86_CMPXCHG8Instruction |
X86_OnboardAPIC |
X86_SYSENTER_SYSEXIT |
X86_MemoryTypeRangeRegisters |
X86_PageGlobalEnable |
X86_MachineCheckArchitecture |
X86_CMOVInstruction |
X86_PageAttributeTable |
X86_36BitPSEs |
// X86_ProcessorSerialNumber |
X86_CLFLUSHInstruction |
// X86_DebugTraceStore |
// X86_ACPIViaMSR |
X86_MultimediaExtensions |
X86_FXSAVE_FXRSTOR |
X86_StreamingSIMDExtensions |
X86_StreamingSIMDExtensions2 |
// X86_CPUSelfSnoop |
// X86_HyperThreading |
// X86_AutomaticClockControl |
// X86_IA64Processor |
0;
// Bits which describe the system hardware capabilities
// XXX Figure out what these should be
auxv.push_back(auxv_t(M5_AT_HWCAP, features));
// The system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
// Frequency at which times() increments
// Defined to be 100 in the kernel source.
auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
// This is the virtual address of the program header tables if they
// appear in the executable image.
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
// This is the base address of the ELF interpreter; it should be
// zero for static executables or contain the base address for
// dynamic executables.
auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
// XXX Figure out what this should be.
auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
// The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
// Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
// Whether to enable "secure mode" in the executable
auxv.push_back(auxv_t(M5_AT_SECURE, 0));
// The address of 16 "random" bytes.
auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
// The name of the program
auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
// The platform string
auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
}
// Figure out how big the initial stack needs to be
// A sentry NULL void pointer at the top of the stack.
int sentry_size = intSize;
// This is the name of the file which is present on the initial stack
// It's purpose is to let the user space linker examine the original file.
int file_name_size = filename.size() + 1;
const int numRandomBytes = 16;
int aux_data_size = numRandomBytes;
string platform = "x86_64";
aux_data_size += platform.size() + 1;
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i)
env_data_size += envp[i].size() + 1;
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i)
arg_data_size += argv[i].size() + 1;
// The info_block needs to be padded so its size is a multiple of the
// alignment mask. Also, it appears that there needs to be at least some
// padding, so if the size is already a multiple, we need to increase it
// anyway.
int base_info_block_size =
sentry_size + file_name_size + env_data_size + arg_data_size;
int info_block_size = roundUp(base_info_block_size, align);
int info_block_padding = info_block_size - base_info_block_size;
// Each auxiliary vector is two 8 byte words
int aux_array_size = intSize * 2 * (auxv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int argv_array_size = intSize * (argv.size() + 1);
int argc_size = intSize;
// Figure out the size of the contents of the actual initial frame
int frame_size =
aux_array_size +
envp_array_size +
argv_array_size +
argc_size;
// There needs to be padding after the auxiliary vector data so that the
// very bottom of the stack is aligned properly.
int partial_size = frame_size + aux_data_size;
int aligned_partial_size = roundUp(partial_size, align);
int aux_padding = aligned_partial_size - partial_size;
int space_needed =
info_block_size +
aux_data_size +
aux_padding +
frame_size;
Addr stack_base = memState->getStackBase();
Addr stack_min = stack_base - space_needed;
stack_min = roundDown(stack_min, align);
unsigned stack_size = stack_base - stack_min;
stack_size = roundUp(stack_size, pageSize);
memState->setStackSize(stack_size);
// map memory
Addr stack_end = roundDown(stack_base - stack_size, pageSize);
DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
allocateMem(stack_end, stack_size);
// map out initial stack contents
IntType sentry_base = stack_base - sentry_size;
IntType file_name_base = sentry_base - file_name_size;
IntType env_data_base = file_name_base - env_data_size;
IntType arg_data_base = env_data_base - arg_data_size;
IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
IntType envp_array_base = auxv_array_base - envp_array_size;
IntType argv_array_base = envp_array_base - argv_array_size;
IntType argc_base = argv_array_base - argc_size;
DPRINTF(Stack, "The addresses of items on the initial stack:\n");
DPRINTF(Stack, "0x%x - file name\n", file_name_base);
DPRINTF(Stack, "0x%x - env data\n", env_data_base);
DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
DPRINTF(Stack, "0x%x - argc \n", argc_base);
DPRINTF(Stack, "0x%x - stack min\n", stack_min);
// write contents to stack
// figure out argc
IntType argc = argv.size();
IntType guestArgc = X86ISA::htog(argc);
// Write out the sentry void *
IntType sentry_NULL = 0;
initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
// Write the file name
initVirtMem.writeString(file_name_base, filename.c_str());
// Fix up the aux vectors which point to data
assert(auxv[auxv.size() - 3].getHostAuxType() == M5_AT_RANDOM);
auxv[auxv.size() - 3].setAuxVal(aux_data_base);
assert(auxv[auxv.size() - 2].getHostAuxType() == M5_AT_EXECFN);
auxv[auxv.size() - 2].setAuxVal(argv_array_base);
assert(auxv[auxv.size() - 1].getHostAuxType() == M5_AT_PLATFORM);
auxv[auxv.size() - 1].setAuxVal(aux_data_base + numRandomBytes);
// Copy the aux stuff
for (int x = 0; x < auxv.size(); x++) {
initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].getAuxType()),
intSize);
initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].getAuxVal()),
intSize);
}
// Write out the terminating zeroed auxiliary vector
const uint64_t zero = 0;
initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
(uint8_t*)&zero, intSize);
initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
(uint8_t*)&zero, intSize);
initVirtMem.writeString(aux_data_base, platform.c_str());
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
ThreadContext *tc = system->getThreadContext(contextIds[0]);
// Set the stack pointer register
tc->setIntReg(StackPointerReg, stack_min);
// There doesn't need to be any segment base added in since we're dealing
// with the flat segmentation model.
tc->pcState(getStartPC());
// Align the "stack_min" to a page boundary.
memState->setStackMin(roundDown(stack_min, pageSize));
}
void
X86_64Process::argsInit(int pageSize)
{
std::vector<AuxVector<uint64_t> > extraAuxvs;
extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
vsyscallPage.base));
X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
}
void
I386Process::argsInit(int pageSize)
{
std::vector<AuxVector<uint32_t> > extraAuxvs;
//Tell the binary where the vsyscall part of the vsyscall page is.
extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
vsyscallPage.base + vsyscallPage.vsyscallOffset));
extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
vsyscallPage.base));
X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
}
void
X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
{
tc->setIntReg(INTREG_RAX, retval.encodedValue());
}
RegVal
X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < NumArgumentRegs);
return tc->readIntReg(ArgumentReg[i++]);
}
void
X86_64Process::setSyscallArg(ThreadContext *tc, int i, RegVal val)
{
assert(i < NumArgumentRegs);
return tc->setIntReg(ArgumentReg[i], val);
}
void
X86_64Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
Process *p, RegVal flags)
{
X86Process::clone(old_tc, new_tc, p, flags);
((X86_64Process*)p)->vsyscallPage = vsyscallPage;
}
RegVal
I386Process::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < NumArgumentRegs32);
return tc->readIntReg(ArgumentReg32[i++]);
}
RegVal
I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
{
assert(width == 32 || width == 64);
assert(i < NumArgumentRegs);
uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
if (width == 64)
retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
return retVal;
}
void
I386Process::setSyscallArg(ThreadContext *tc, int i, RegVal val)
{
assert(i < NumArgumentRegs);
return tc->setIntReg(ArgumentReg[i], val);
}
void
I386Process::clone(ThreadContext *old_tc, ThreadContext *new_tc,
Process *p, RegVal flags)
{
X86Process::clone(old_tc, new_tc, p, flags);
((I386Process*)p)->vsyscallPage = vsyscallPage;
}