| /* |
| * Copyright (c) 2003 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __INTMATH_HH__ |
| #define __INTMATH_HH__ |
| |
| // Returns the prime number one less than n. |
| int PrevPrime(int n); |
| |
| // Determine if a number is prime |
| template <class T> |
| inline bool |
| IsPrime(T n) |
| { |
| T i; |
| |
| if (n == 2 || n == 3) |
| return true; |
| |
| // Don't try every odd number to prove if it is a prime. |
| // Toggle between every 2nd and 4th number. |
| // (This is because every 6th odd number is divisible by 3.) |
| for (i = 5; i*i <= n; i += 6) { |
| if (((n % i) == 0 ) || ((n % (i + 2)) == 0) ) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| template <class T> |
| inline T |
| LeastSigBit(T n) |
| { |
| return n & ~(n - 1); |
| } |
| |
| template <class T> |
| inline bool |
| IsPowerOf2(T n) |
| { |
| return n != 0 && LeastSigBit(n) == n; |
| } |
| |
| template <class T> |
| inline int |
| FloorLog2(T x) |
| { |
| if (x == 0) |
| return -1; |
| |
| int y = 0; |
| |
| if (x & 0xffff0000) { y += 16; x >>= 16; } |
| if (x & 0x0000ff00) { y += 8; x >>= 8; } |
| if (x & 0x000000f0) { y += 4; x >>= 4; } |
| if (x & 0x0000000c) { y += 2; x >>= 2; } |
| if (x & 0x00000002) { y += 1; } |
| |
| return y; |
| } |
| |
| template <class T> |
| inline int |
| CeilLog2(T n) |
| { |
| return FloorLog2(n - 1) + 1; |
| } |
| |
| template <class T> |
| inline T |
| FloorPow2(T n) |
| { |
| return (T)1 << FloorLog2(n); |
| } |
| |
| template <class T> |
| inline T |
| CeilPow2(T n) |
| { |
| return (T)1 << CeilLog2(n); |
| } |
| |
| template <class T> |
| inline T |
| DivCeil(T a, T b) |
| { |
| return (a + b - 1) / b; |
| } |
| |
| template <class T> |
| inline T |
| RoundUp(T val, T align) |
| { |
| T mask = align - 1; |
| return (val + mask) & ~mask; |
| } |
| |
| template <class T> |
| inline T |
| RoundDown(T val, T align) |
| { |
| T mask = align - 1; |
| return val & ~mask; |
| } |
| |
| inline bool |
| IsHex(char c) |
| { |
| return c >= '0' && c <= '9' || |
| c >= 'A' && c <= 'F' || |
| c >= 'a' && c <= 'f'; |
| } |
| |
| inline bool |
| IsOct(char c) |
| { |
| return c >= '0' && c <= '7'; |
| } |
| |
| inline bool |
| IsDec(char c) |
| { |
| return c >= '0' && c <= '9'; |
| } |
| |
| inline int |
| Hex2Int(char c) |
| { |
| if (c >= '0' && c <= '9') |
| return (c - '0'); |
| |
| if(c >= 'A' && c <= 'F') |
| return (c - 'A') + 10; |
| |
| if (c >= 'a' && c <= 'f') |
| return (c - 'a') + 10; |
| |
| return 0; |
| } |
| |
| #endif // __INTMATH_HH__ |