| /* |
| * Copyright (c) 2011-2012, 2016 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2001-2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Steve Reinhardt |
| * Nathan Binkert |
| */ |
| |
| #ifndef __CPU_SIMPLE_THREAD_HH__ |
| #define __CPU_SIMPLE_THREAD_HH__ |
| |
| #include "arch/decoder.hh" |
| #include "arch/generic/tlb.hh" |
| #include "arch/isa.hh" |
| #include "arch/isa_traits.hh" |
| #include "arch/registers.hh" |
| #include "arch/types.hh" |
| #include "base/types.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/thread_context.hh" |
| #include "cpu/thread_state.hh" |
| #include "debug/CCRegs.hh" |
| #include "debug/FloatRegs.hh" |
| #include "debug/IntRegs.hh" |
| #include "debug/VecRegs.hh" |
| #include "mem/page_table.hh" |
| #include "mem/request.hh" |
| #include "sim/byteswap.hh" |
| #include "sim/eventq.hh" |
| #include "sim/process.hh" |
| #include "sim/serialize.hh" |
| #include "sim/system.hh" |
| |
| class BaseCPU; |
| class CheckerCPU; |
| |
| class FunctionProfile; |
| class ProfileNode; |
| |
| namespace TheISA { |
| namespace Kernel { |
| class Statistics; |
| } |
| } |
| |
| /** |
| * The SimpleThread object provides a combination of the ThreadState |
| * object and the ThreadContext interface. It implements the |
| * ThreadContext interface so that a ProxyThreadContext class can be |
| * made using SimpleThread as the template parameter (see |
| * thread_context.hh). It adds to the ThreadState object by adding all |
| * the objects needed for simple functional execution, including a |
| * simple architectural register file, and pointers to the ITB and DTB |
| * in full system mode. For CPU models that do not need more advanced |
| * ways to hold state (i.e. a separate physical register file, or |
| * separate fetch and commit PC's), this SimpleThread class provides |
| * all the necessary state for full architecture-level functional |
| * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for |
| * examples. |
| */ |
| |
| class SimpleThread : public ThreadState |
| { |
| protected: |
| typedef TheISA::MachInst MachInst; |
| typedef TheISA::MiscReg MiscReg; |
| typedef TheISA::FloatReg FloatReg; |
| typedef TheISA::FloatRegBits FloatRegBits; |
| typedef TheISA::CCReg CCReg; |
| using VecRegContainer = TheISA::VecRegContainer; |
| using VecElem = TheISA::VecElem; |
| public: |
| typedef ThreadContext::Status Status; |
| |
| protected: |
| union { |
| FloatReg f[TheISA::NumFloatRegs]; |
| FloatRegBits i[TheISA::NumFloatRegs]; |
| } floatRegs; |
| TheISA::IntReg intRegs[TheISA::NumIntRegs]; |
| VecRegContainer vecRegs[TheISA::NumVecRegs]; |
| #ifdef ISA_HAS_CC_REGS |
| TheISA::CCReg ccRegs[TheISA::NumCCRegs]; |
| #endif |
| TheISA::ISA *const isa; // one "instance" of the current ISA. |
| |
| TheISA::PCState _pcState; |
| |
| /** Did this instruction execute or is it predicated false */ |
| bool predicate; |
| |
| public: |
| std::string name() const |
| { |
| return csprintf("%s.[tid:%i]", baseCpu->name(), tc->threadId()); |
| } |
| |
| ProxyThreadContext<SimpleThread> *tc; |
| |
| System *system; |
| |
| BaseTLB *itb; |
| BaseTLB *dtb; |
| |
| TheISA::Decoder decoder; |
| |
| // constructor: initialize SimpleThread from given process structure |
| // FS |
| SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, |
| BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa, |
| bool use_kernel_stats = true); |
| // SE |
| SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, |
| Process *_process, BaseTLB *_itb, BaseTLB *_dtb, |
| TheISA::ISA *_isa); |
| |
| virtual ~SimpleThread(); |
| |
| virtual void takeOverFrom(ThreadContext *oldContext); |
| |
| void regStats(const std::string &name); |
| |
| void copyState(ThreadContext *oldContext); |
| |
| void serialize(CheckpointOut &cp) const override; |
| void unserialize(CheckpointIn &cp) override; |
| void startup(); |
| |
| /*************************************************************** |
| * SimpleThread functions to provide CPU with access to various |
| * state. |
| **************************************************************/ |
| |
| /** Returns the pointer to this SimpleThread's ThreadContext. Used |
| * when a ThreadContext must be passed to objects outside of the |
| * CPU. |
| */ |
| ThreadContext *getTC() { return tc; } |
| |
| void demapPage(Addr vaddr, uint64_t asn) |
| { |
| itb->demapPage(vaddr, asn); |
| dtb->demapPage(vaddr, asn); |
| } |
| |
| void demapInstPage(Addr vaddr, uint64_t asn) |
| { |
| itb->demapPage(vaddr, asn); |
| } |
| |
| void demapDataPage(Addr vaddr, uint64_t asn) |
| { |
| dtb->demapPage(vaddr, asn); |
| } |
| |
| void dumpFuncProfile(); |
| |
| Fault hwrei(); |
| |
| bool simPalCheck(int palFunc); |
| |
| /******************************************* |
| * ThreadContext interface functions. |
| ******************************************/ |
| |
| BaseCPU *getCpuPtr() { return baseCpu; } |
| |
| BaseTLB *getITBPtr() { return itb; } |
| |
| BaseTLB *getDTBPtr() { return dtb; } |
| |
| CheckerCPU *getCheckerCpuPtr() { return NULL; } |
| |
| TheISA::Decoder *getDecoderPtr() { return &decoder; } |
| |
| System *getSystemPtr() { return system; } |
| |
| Status status() const { return _status; } |
| |
| void setStatus(Status newStatus) { _status = newStatus; } |
| |
| /// Set the status to Active. |
| void activate(); |
| |
| /// Set the status to Suspended. |
| void suspend(); |
| |
| /// Set the status to Halted. |
| void halt(); |
| |
| void copyArchRegs(ThreadContext *tc); |
| |
| void clearArchRegs() |
| { |
| _pcState = 0; |
| memset(intRegs, 0, sizeof(intRegs)); |
| memset(floatRegs.i, 0, sizeof(floatRegs.i)); |
| for (int i = 0; i < TheISA::NumVecRegs; i++) { |
| vecRegs[i].zero(); |
| } |
| #ifdef ISA_HAS_CC_REGS |
| memset(ccRegs, 0, sizeof(ccRegs)); |
| #endif |
| isa->clear(); |
| } |
| |
| // |
| // New accessors for new decoder. |
| // |
| uint64_t readIntReg(int reg_idx) |
| { |
| int flatIndex = isa->flattenIntIndex(reg_idx); |
| assert(flatIndex < TheISA::NumIntRegs); |
| uint64_t regVal(readIntRegFlat(flatIndex)); |
| DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n", |
| reg_idx, flatIndex, regVal); |
| return regVal; |
| } |
| |
| FloatReg readFloatReg(int reg_idx) |
| { |
| int flatIndex = isa->flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| FloatReg regVal(readFloatRegFlat(flatIndex)); |
| DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n", |
| reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]); |
| return regVal; |
| } |
| |
| FloatRegBits readFloatRegBits(int reg_idx) |
| { |
| int flatIndex = isa->flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| FloatRegBits regVal(readFloatRegBitsFlat(flatIndex)); |
| DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n", |
| reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]); |
| return regVal; |
| } |
| |
| const VecRegContainer& |
| readVecReg(const RegId& reg) const |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| const VecRegContainer& regVal = readVecRegFlat(flatIndex); |
| DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n", |
| reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print()); |
| return regVal; |
| } |
| |
| VecRegContainer& |
| getWritableVecReg(const RegId& reg) |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| VecRegContainer& regVal = getWritableVecRegFlat(flatIndex); |
| DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n", |
| reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print()); |
| return regVal; |
| } |
| |
| /** Vector Register Lane Interfaces. */ |
| /** @{ */ |
| /** Reads source vector <T> operand. */ |
| template <typename T> |
| VecLaneT<T, true> |
| readVecLane(const RegId& reg) const |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| auto regVal = readVecLaneFlat<T>(flatIndex, reg.elemIndex()); |
| DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n", |
| reg.index(), flatIndex, reg.elemIndex(), regVal); |
| return regVal; |
| } |
| |
| /** Reads source vector 8bit operand. */ |
| virtual ConstVecLane8 |
| readVec8BitLaneReg(const RegId& reg) const |
| { return readVecLane<uint8_t>(reg); } |
| |
| /** Reads source vector 16bit operand. */ |
| virtual ConstVecLane16 |
| readVec16BitLaneReg(const RegId& reg) const |
| { return readVecLane<uint16_t>(reg); } |
| |
| /** Reads source vector 32bit operand. */ |
| virtual ConstVecLane32 |
| readVec32BitLaneReg(const RegId& reg) const |
| { return readVecLane<uint32_t>(reg); } |
| |
| /** Reads source vector 64bit operand. */ |
| virtual ConstVecLane64 |
| readVec64BitLaneReg(const RegId& reg) const |
| { return readVecLane<uint64_t>(reg); } |
| |
| /** Write a lane of the destination vector register. */ |
| template <typename LD> |
| void setVecLaneT(const RegId& reg, const LD& val) |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| setVecLaneFlat(flatIndex, reg.elemIndex(), val); |
| DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n", |
| reg.index(), flatIndex, reg.elemIndex(), val); |
| } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::Byte>& val) |
| { return setVecLaneT(reg, val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::TwoByte>& val) |
| { return setVecLaneT(reg, val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::FourByte>& val) |
| { return setVecLaneT(reg, val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::EightByte>& val) |
| { return setVecLaneT(reg, val); } |
| /** @} */ |
| |
| const VecElem& readVecElem(const RegId& reg) const |
| { |
| int flatIndex = isa->flattenVecElemIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex()); |
| DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as" |
| " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal); |
| return regVal; |
| } |
| |
| |
| CCReg readCCReg(int reg_idx) |
| { |
| #ifdef ISA_HAS_CC_REGS |
| int flatIndex = isa->flattenCCIndex(reg_idx); |
| assert(0 <= flatIndex); |
| assert(flatIndex < TheISA::NumCCRegs); |
| uint64_t regVal(readCCRegFlat(flatIndex)); |
| DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n", |
| reg_idx, flatIndex, regVal); |
| return regVal; |
| #else |
| panic("Tried to read a CC register."); |
| return 0; |
| #endif |
| } |
| |
| void setIntReg(int reg_idx, uint64_t val) |
| { |
| int flatIndex = isa->flattenIntIndex(reg_idx); |
| assert(flatIndex < TheISA::NumIntRegs); |
| DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n", |
| reg_idx, flatIndex, val); |
| setIntRegFlat(flatIndex, val); |
| } |
| |
| void setFloatReg(int reg_idx, FloatReg val) |
| { |
| int flatIndex = isa->flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| setFloatRegFlat(flatIndex, val); |
| DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n", |
| reg_idx, flatIndex, val, floatRegs.i[flatIndex]); |
| } |
| |
| void setFloatRegBits(int reg_idx, FloatRegBits val) |
| { |
| int flatIndex = isa->flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| // XXX: Fix array out of bounds compiler error for gem5.fast |
| // when checkercpu enabled |
| if (flatIndex < TheISA::NumFloatRegs) |
| setFloatRegBitsFlat(flatIndex, val); |
| DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n", |
| reg_idx, flatIndex, val, floatRegs.f[flatIndex]); |
| } |
| |
| void setVecReg(const RegId& reg, const VecRegContainer& val) |
| { |
| int flatIndex = isa->flattenVecIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| setVecRegFlat(flatIndex, val); |
| DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n", |
| reg.index(), flatIndex, val.print()); |
| } |
| |
| void setVecElem(const RegId& reg, const VecElem& val) |
| { |
| int flatIndex = isa->flattenVecElemIndex(reg.index()); |
| assert(flatIndex < TheISA::NumVecRegs); |
| setVecElemFlat(flatIndex, reg.elemIndex(), val); |
| DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to" |
| " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val); |
| } |
| |
| void setCCReg(int reg_idx, CCReg val) |
| { |
| #ifdef ISA_HAS_CC_REGS |
| int flatIndex = isa->flattenCCIndex(reg_idx); |
| assert(flatIndex < TheISA::NumCCRegs); |
| DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n", |
| reg_idx, flatIndex, val); |
| setCCRegFlat(flatIndex, val); |
| #else |
| panic("Tried to set a CC register."); |
| #endif |
| } |
| |
| TheISA::PCState |
| pcState() |
| { |
| return _pcState; |
| } |
| |
| void |
| pcState(const TheISA::PCState &val) |
| { |
| _pcState = val; |
| } |
| |
| void |
| pcStateNoRecord(const TheISA::PCState &val) |
| { |
| _pcState = val; |
| } |
| |
| Addr |
| instAddr() |
| { |
| return _pcState.instAddr(); |
| } |
| |
| Addr |
| nextInstAddr() |
| { |
| return _pcState.nextInstAddr(); |
| } |
| |
| void |
| setNPC(Addr val) |
| { |
| _pcState.setNPC(val); |
| } |
| |
| MicroPC |
| microPC() |
| { |
| return _pcState.microPC(); |
| } |
| |
| bool readPredicate() |
| { |
| return predicate; |
| } |
| |
| void setPredicate(bool val) |
| { |
| predicate = val; |
| } |
| |
| MiscReg |
| readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) const |
| { |
| return isa->readMiscRegNoEffect(misc_reg); |
| } |
| |
| MiscReg |
| readMiscReg(int misc_reg, ThreadID tid = 0) |
| { |
| return isa->readMiscReg(misc_reg, tc); |
| } |
| |
| void |
| setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0) |
| { |
| return isa->setMiscRegNoEffect(misc_reg, val); |
| } |
| |
| void |
| setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0) |
| { |
| return isa->setMiscReg(misc_reg, val, tc); |
| } |
| |
| RegId |
| flattenRegId(const RegId& regId) const |
| { |
| return isa->flattenRegId(regId); |
| } |
| |
| unsigned readStCondFailures() { return storeCondFailures; } |
| |
| void setStCondFailures(unsigned sc_failures) |
| { storeCondFailures = sc_failures; } |
| |
| void syscall(int64_t callnum, Fault *fault) |
| { |
| process->syscall(callnum, tc, fault); |
| } |
| |
| uint64_t readIntRegFlat(int idx) { return intRegs[idx]; } |
| void setIntRegFlat(int idx, uint64_t val) { intRegs[idx] = val; } |
| |
| FloatReg readFloatRegFlat(int idx) { return floatRegs.f[idx]; } |
| void setFloatRegFlat(int idx, FloatReg val) { floatRegs.f[idx] = val; } |
| |
| FloatRegBits readFloatRegBitsFlat(int idx) { return floatRegs.i[idx]; } |
| void setFloatRegBitsFlat(int idx, FloatRegBits val) { |
| floatRegs.i[idx] = val; |
| } |
| |
| const VecRegContainer& readVecRegFlat(const RegIndex& reg) const |
| { |
| return vecRegs[reg]; |
| } |
| |
| VecRegContainer& getWritableVecRegFlat(const RegIndex& reg) |
| { |
| return vecRegs[reg]; |
| } |
| |
| void setVecRegFlat(const RegIndex& reg, const VecRegContainer& val) |
| { |
| vecRegs[reg] = val; |
| } |
| |
| template <typename T> |
| VecLaneT<T, true> readVecLaneFlat(const RegIndex& reg, int lId) const |
| { |
| return vecRegs[reg].laneView<T>(lId); |
| } |
| |
| template <typename LD> |
| void setVecLaneFlat(const RegIndex& reg, int lId, const LD& val) |
| { |
| vecRegs[reg].laneView<typename LD::UnderlyingType>(lId) = val; |
| } |
| |
| const VecElem& readVecElemFlat(const RegIndex& reg, |
| const ElemIndex& elemIndex) const |
| { |
| return vecRegs[reg].as<TheISA::VecElem>()[elemIndex]; |
| } |
| |
| void setVecElemFlat(const RegIndex& reg, const ElemIndex& elemIndex, |
| const VecElem val) |
| { |
| vecRegs[reg].as<TheISA::VecElem>()[elemIndex] = val; |
| } |
| |
| #ifdef ISA_HAS_CC_REGS |
| CCReg readCCRegFlat(int idx) { return ccRegs[idx]; } |
| void setCCRegFlat(int idx, CCReg val) { ccRegs[idx] = val; } |
| #else |
| CCReg readCCRegFlat(int idx) |
| { panic("readCCRegFlat w/no CC regs!\n"); } |
| |
| void setCCRegFlat(int idx, CCReg val) |
| { panic("setCCRegFlat w/no CC regs!\n"); } |
| #endif |
| }; |
| |
| |
| #endif // __CPU_CPU_EXEC_CONTEXT_HH__ |