blob: 3c64082b8a944f0fbb32067bdd76e7068e1fbe06 [file] [log] [blame]
/*
* Copyright (c) 2011-2012, 2016 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
#ifndef __CPU_SIMPLE_THREAD_HH__
#define __CPU_SIMPLE_THREAD_HH__
#include "arch/decoder.hh"
#include "arch/generic/tlb.hh"
#include "arch/isa.hh"
#include "arch/isa_traits.hh"
#include "arch/registers.hh"
#include "arch/types.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "cpu/thread_context.hh"
#include "cpu/thread_state.hh"
#include "debug/CCRegs.hh"
#include "debug/FloatRegs.hh"
#include "debug/IntRegs.hh"
#include "debug/VecRegs.hh"
#include "mem/page_table.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/process.hh"
#include "sim/serialize.hh"
#include "sim/system.hh"
class BaseCPU;
class CheckerCPU;
class FunctionProfile;
class ProfileNode;
namespace TheISA {
namespace Kernel {
class Statistics;
}
}
/**
* The SimpleThread object provides a combination of the ThreadState
* object and the ThreadContext interface. It implements the
* ThreadContext interface so that a ProxyThreadContext class can be
* made using SimpleThread as the template parameter (see
* thread_context.hh). It adds to the ThreadState object by adding all
* the objects needed for simple functional execution, including a
* simple architectural register file, and pointers to the ITB and DTB
* in full system mode. For CPU models that do not need more advanced
* ways to hold state (i.e. a separate physical register file, or
* separate fetch and commit PC's), this SimpleThread class provides
* all the necessary state for full architecture-level functional
* simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
* examples.
*/
class SimpleThread : public ThreadState
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
typedef TheISA::CCReg CCReg;
using VecRegContainer = TheISA::VecRegContainer;
using VecElem = TheISA::VecElem;
public:
typedef ThreadContext::Status Status;
protected:
union {
FloatReg f[TheISA::NumFloatRegs];
FloatRegBits i[TheISA::NumFloatRegs];
} floatRegs;
TheISA::IntReg intRegs[TheISA::NumIntRegs];
VecRegContainer vecRegs[TheISA::NumVecRegs];
#ifdef ISA_HAS_CC_REGS
TheISA::CCReg ccRegs[TheISA::NumCCRegs];
#endif
TheISA::ISA *const isa; // one "instance" of the current ISA.
TheISA::PCState _pcState;
/** Did this instruction execute or is it predicated false */
bool predicate;
public:
std::string name() const
{
return csprintf("%s.[tid:%i]", baseCpu->name(), tc->threadId());
}
ProxyThreadContext<SimpleThread> *tc;
System *system;
BaseTLB *itb;
BaseTLB *dtb;
TheISA::Decoder decoder;
// constructor: initialize SimpleThread from given process structure
// FS
SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa,
bool use_kernel_stats = true);
// SE
SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
Process *_process, BaseTLB *_itb, BaseTLB *_dtb,
TheISA::ISA *_isa);
virtual ~SimpleThread();
virtual void takeOverFrom(ThreadContext *oldContext);
void regStats(const std::string &name);
void copyState(ThreadContext *oldContext);
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
void startup();
/***************************************************************
* SimpleThread functions to provide CPU with access to various
* state.
**************************************************************/
/** Returns the pointer to this SimpleThread's ThreadContext. Used
* when a ThreadContext must be passed to objects outside of the
* CPU.
*/
ThreadContext *getTC() { return tc; }
void demapPage(Addr vaddr, uint64_t asn)
{
itb->demapPage(vaddr, asn);
dtb->demapPage(vaddr, asn);
}
void demapInstPage(Addr vaddr, uint64_t asn)
{
itb->demapPage(vaddr, asn);
}
void demapDataPage(Addr vaddr, uint64_t asn)
{
dtb->demapPage(vaddr, asn);
}
void dumpFuncProfile();
Fault hwrei();
bool simPalCheck(int palFunc);
/*******************************************
* ThreadContext interface functions.
******************************************/
BaseCPU *getCpuPtr() { return baseCpu; }
BaseTLB *getITBPtr() { return itb; }
BaseTLB *getDTBPtr() { return dtb; }
CheckerCPU *getCheckerCpuPtr() { return NULL; }
TheISA::Decoder *getDecoderPtr() { return &decoder; }
System *getSystemPtr() { return system; }
Status status() const { return _status; }
void setStatus(Status newStatus) { _status = newStatus; }
/// Set the status to Active.
void activate();
/// Set the status to Suspended.
void suspend();
/// Set the status to Halted.
void halt();
void copyArchRegs(ThreadContext *tc);
void clearArchRegs()
{
_pcState = 0;
memset(intRegs, 0, sizeof(intRegs));
memset(floatRegs.i, 0, sizeof(floatRegs.i));
for (int i = 0; i < TheISA::NumVecRegs; i++) {
vecRegs[i].zero();
}
#ifdef ISA_HAS_CC_REGS
memset(ccRegs, 0, sizeof(ccRegs));
#endif
isa->clear();
}
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
int flatIndex = isa->flattenIntIndex(reg_idx);
assert(flatIndex < TheISA::NumIntRegs);
uint64_t regVal(readIntRegFlat(flatIndex));
DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
reg_idx, flatIndex, regVal);
return regVal;
}
FloatReg readFloatReg(int reg_idx)
{
int flatIndex = isa->flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
FloatReg regVal(readFloatRegFlat(flatIndex));
DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
return regVal;
}
FloatRegBits readFloatRegBits(int reg_idx)
{
int flatIndex = isa->flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
FloatRegBits regVal(readFloatRegBitsFlat(flatIndex));
DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
return regVal;
}
const VecRegContainer&
readVecReg(const RegId& reg) const
{
int flatIndex = isa->flattenVecIndex(reg.index());
assert(flatIndex < TheISA::NumVecRegs);
const VecRegContainer& regVal = readVecRegFlat(flatIndex);
DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n",
reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print());
return regVal;
}
VecRegContainer&
getWritableVecReg(const RegId& reg)
{
int flatIndex = isa->flattenVecIndex(reg.index());
assert(flatIndex < TheISA::NumVecRegs);
VecRegContainer& regVal = getWritableVecRegFlat(flatIndex);
DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n",
reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print());
return regVal;
}
/** Vector Register Lane Interfaces. */
/** @{ */
/** Reads source vector <T> operand. */
template <typename T>
VecLaneT<T, true>
readVecLane(const RegId& reg) const
{
int flatIndex = isa->flattenVecIndex(reg.index());
assert(flatIndex < TheISA::NumVecRegs);
auto regVal = readVecLaneFlat<T>(flatIndex, reg.elemIndex());
DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n",
reg.index(), flatIndex, reg.elemIndex(), regVal);
return regVal;
}
/** Reads source vector 8bit operand. */
virtual ConstVecLane8
readVec8BitLaneReg(const RegId& reg) const
{ return readVecLane<uint8_t>(reg); }
/** Reads source vector 16bit operand. */
virtual ConstVecLane16
readVec16BitLaneReg(const RegId& reg) const
{ return readVecLane<uint16_t>(reg); }
/** Reads source vector 32bit operand. */
virtual ConstVecLane32
readVec32BitLaneReg(const RegId& reg) const
{ return readVecLane<uint32_t>(reg); }
/** Reads source vector 64bit operand. */
virtual ConstVecLane64
readVec64BitLaneReg(const RegId& reg) const
{ return readVecLane<uint64_t>(reg); }
/** Write a lane of the destination vector register. */
template <typename LD>
void setVecLaneT(const RegId& reg, const LD& val)
{
int flatIndex = isa->flattenVecIndex(reg.index());
assert(flatIndex < TheISA::NumVecRegs);
setVecLaneFlat(flatIndex, reg.elemIndex(), val);
DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n",
reg.index(), flatIndex, reg.elemIndex(), val);
}
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::Byte>& val)
{ return setVecLaneT(reg, val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::TwoByte>& val)
{ return setVecLaneT(reg, val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::FourByte>& val)
{ return setVecLaneT(reg, val); }
virtual void setVecLane(const RegId& reg,
const LaneData<LaneSize::EightByte>& val)
{ return setVecLaneT(reg, val); }
/** @} */
const VecElem& readVecElem(const RegId& reg) const
{
int flatIndex = isa->flattenVecElemIndex(reg.index());
assert(flatIndex < TheISA::NumVecRegs);
const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex());
DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as"
" %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal);
return regVal;
}
CCReg readCCReg(int reg_idx)
{
#ifdef ISA_HAS_CC_REGS
int flatIndex = isa->flattenCCIndex(reg_idx);
assert(0 <= flatIndex);
assert(flatIndex < TheISA::NumCCRegs);
uint64_t regVal(readCCRegFlat(flatIndex));
DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n",
reg_idx, flatIndex, regVal);
return regVal;
#else
panic("Tried to read a CC register.");
return 0;
#endif
}
void setIntReg(int reg_idx, uint64_t val)
{
int flatIndex = isa->flattenIntIndex(reg_idx);
assert(flatIndex < TheISA::NumIntRegs);
DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
reg_idx, flatIndex, val);
setIntRegFlat(flatIndex, val);
}
void setFloatReg(int reg_idx, FloatReg val)
{
int flatIndex = isa->flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
setFloatRegFlat(flatIndex, val);
DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
}
void setFloatRegBits(int reg_idx, FloatRegBits val)
{
int flatIndex = isa->flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
// XXX: Fix array out of bounds compiler error for gem5.fast
// when checkercpu enabled
if (flatIndex < TheISA::NumFloatRegs)
setFloatRegBitsFlat(flatIndex, val);
DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
}
void setVecReg(const RegId& reg, const VecRegContainer& val)
{
int flatIndex = isa->flattenVecIndex(reg.index());
assert(flatIndex < TheISA::NumVecRegs);
setVecRegFlat(flatIndex, val);
DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n",
reg.index(), flatIndex, val.print());
}
void setVecElem(const RegId& reg, const VecElem& val)
{
int flatIndex = isa->flattenVecElemIndex(reg.index());
assert(flatIndex < TheISA::NumVecRegs);
setVecElemFlat(flatIndex, reg.elemIndex(), val);
DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to"
" %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val);
}
void setCCReg(int reg_idx, CCReg val)
{
#ifdef ISA_HAS_CC_REGS
int flatIndex = isa->flattenCCIndex(reg_idx);
assert(flatIndex < TheISA::NumCCRegs);
DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n",
reg_idx, flatIndex, val);
setCCRegFlat(flatIndex, val);
#else
panic("Tried to set a CC register.");
#endif
}
TheISA::PCState
pcState()
{
return _pcState;
}
void
pcState(const TheISA::PCState &val)
{
_pcState = val;
}
void
pcStateNoRecord(const TheISA::PCState &val)
{
_pcState = val;
}
Addr
instAddr()
{
return _pcState.instAddr();
}
Addr
nextInstAddr()
{
return _pcState.nextInstAddr();
}
void
setNPC(Addr val)
{
_pcState.setNPC(val);
}
MicroPC
microPC()
{
return _pcState.microPC();
}
bool readPredicate()
{
return predicate;
}
void setPredicate(bool val)
{
predicate = val;
}
MiscReg
readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) const
{
return isa->readMiscRegNoEffect(misc_reg);
}
MiscReg
readMiscReg(int misc_reg, ThreadID tid = 0)
{
return isa->readMiscReg(misc_reg, tc);
}
void
setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
{
return isa->setMiscRegNoEffect(misc_reg, val);
}
void
setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
{
return isa->setMiscReg(misc_reg, val, tc);
}
RegId
flattenRegId(const RegId& regId) const
{
return isa->flattenRegId(regId);
}
unsigned readStCondFailures() { return storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ storeCondFailures = sc_failures; }
void syscall(int64_t callnum, Fault *fault)
{
process->syscall(callnum, tc, fault);
}
uint64_t readIntRegFlat(int idx) { return intRegs[idx]; }
void setIntRegFlat(int idx, uint64_t val) { intRegs[idx] = val; }
FloatReg readFloatRegFlat(int idx) { return floatRegs.f[idx]; }
void setFloatRegFlat(int idx, FloatReg val) { floatRegs.f[idx] = val; }
FloatRegBits readFloatRegBitsFlat(int idx) { return floatRegs.i[idx]; }
void setFloatRegBitsFlat(int idx, FloatRegBits val) {
floatRegs.i[idx] = val;
}
const VecRegContainer& readVecRegFlat(const RegIndex& reg) const
{
return vecRegs[reg];
}
VecRegContainer& getWritableVecRegFlat(const RegIndex& reg)
{
return vecRegs[reg];
}
void setVecRegFlat(const RegIndex& reg, const VecRegContainer& val)
{
vecRegs[reg] = val;
}
template <typename T>
VecLaneT<T, true> readVecLaneFlat(const RegIndex& reg, int lId) const
{
return vecRegs[reg].laneView<T>(lId);
}
template <typename LD>
void setVecLaneFlat(const RegIndex& reg, int lId, const LD& val)
{
vecRegs[reg].laneView<typename LD::UnderlyingType>(lId) = val;
}
const VecElem& readVecElemFlat(const RegIndex& reg,
const ElemIndex& elemIndex) const
{
return vecRegs[reg].as<TheISA::VecElem>()[elemIndex];
}
void setVecElemFlat(const RegIndex& reg, const ElemIndex& elemIndex,
const VecElem val)
{
vecRegs[reg].as<TheISA::VecElem>()[elemIndex] = val;
}
#ifdef ISA_HAS_CC_REGS
CCReg readCCRegFlat(int idx) { return ccRegs[idx]; }
void setCCRegFlat(int idx, CCReg val) { ccRegs[idx] = val; }
#else
CCReg readCCRegFlat(int idx)
{ panic("readCCRegFlat w/no CC regs!\n"); }
void setCCRegFlat(int idx, CCReg val)
{ panic("setCCRegFlat w/no CC regs!\n"); }
#endif
};
#endif // __CPU_CPU_EXEC_CONTEXT_HH__