| |
| /* |
| * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * FuncCallExprAST.C |
| * |
| * Description: See FuncCallExprAST.hh |
| * |
| * $Id$ |
| * |
| */ |
| |
| #include "mem/slicc/ast/FuncCallExprAST.hh" |
| #include "mem/slicc/symbols/SymbolTable.hh" |
| |
| FuncCallExprAST::FuncCallExprAST(string* proc_name_ptr, |
| Vector<ExprAST*>* expr_vec_ptr) |
| : ExprAST() |
| { |
| m_proc_name_ptr = proc_name_ptr; |
| m_expr_vec_ptr = expr_vec_ptr; |
| } |
| |
| FuncCallExprAST::~FuncCallExprAST() |
| { |
| delete m_proc_name_ptr; |
| int size = m_expr_vec_ptr->size(); |
| for(int i=0; i<size; i++) { |
| delete (*m_expr_vec_ptr)[i]; |
| } |
| delete m_expr_vec_ptr; |
| } |
| |
| Type* FuncCallExprAST::generate(string& code) const |
| { |
| // DEBUG_EXPR is strange since it takes parameters of multiple types |
| if (*m_proc_name_ptr == "DEBUG_EXPR") { |
| // FIXME - check for number of parameters |
| code += "DEBUG_SLICC(MedPrio, \""; |
| code += (*m_expr_vec_ptr)[0]->getLocation().toString(); |
| code += ": \", "; |
| (*m_expr_vec_ptr)[0]->generate(code); |
| code += ");\n"; |
| Type* void_type_ptr = g_sym_table.getType("void"); |
| assert(void_type_ptr != NULL); |
| return void_type_ptr; |
| } |
| |
| // hack for adding comments to profileTransition |
| if (*m_proc_name_ptr == "APPEND_TRANSITION_COMMENT") { |
| // FIXME - check for number of parameters |
| code += "APPEND_TRANSITION_COMMENT("; |
| //code += (*m_expr_vec_ptr)[0]->getLocation().toString(); |
| //code += ": \", "; |
| (*m_expr_vec_ptr)[0]->generate(code); |
| code += ");\n"; |
| Type* void_type_ptr = g_sym_table.getType("void"); |
| assert(void_type_ptr != NULL); |
| return void_type_ptr; |
| } |
| |
| // Look up the function in the symbol table |
| Vector<string> code_vec; |
| Func* func_ptr = g_sym_table.getFunc(*m_proc_name_ptr); |
| |
| // Check the types and get the code for the parameters |
| if (func_ptr == NULL) { |
| error("Unrecognized function name: '" + *m_proc_name_ptr + "'"); |
| } else { |
| int size = m_expr_vec_ptr->size(); |
| |
| Vector<Type*> f = func_ptr->getParamTypes(); |
| |
| if (size != f.size() ) { |
| error("Wrong number of arguments passed to function : '" + *m_proc_name_ptr + "'"); |
| } |
| else { |
| for(int i=0; i<size; i++) { |
| |
| // Check the types of the parameter |
| string param_code; |
| Type* actual_type_ptr = (*m_expr_vec_ptr)[i]->generate(param_code); |
| Type* expected_type_ptr = func_ptr->getParamTypes()[i]; |
| if (actual_type_ptr != expected_type_ptr) { |
| (*m_expr_vec_ptr)[i]->error("Type mismatch: expected: " + expected_type_ptr->toString() + |
| " actual: " + actual_type_ptr->toString()); |
| } |
| code_vec.insertAtBottom(param_code); |
| } |
| } |
| } |
| |
| /* OK, the semantics of "trigger" here is that, ports in the machine have |
| * different priorities. We always check the first port for doable |
| * transitions. If nothing/stalled, we pick one from the next port. |
| * |
| * One thing we have to be careful as the SLICC protocol writter is : |
| * If a port have two or more transitions can be picked from in one cycle, |
| * they must be independent. Otherwise, if transition A and B mean to be |
| * executed in sequential, and A get stalled, transition B can be issued |
| * erroneously. In practice, in most case, there is only one transition |
| * should be executed in one cycle for a given port. So as most of current |
| * protocols. |
| */ |
| |
| if (*m_proc_name_ptr == "trigger") { |
| code += indent_str() + "{\n"; |
| code += indent_str() + " Address addr = "; |
| code += code_vec[1]; |
| code += ";\n"; |
| code += indent_str() + " TransitionResult result = doTransition("; |
| code += code_vec[0]; |
| code += ", " + g_sym_table.getStateMachine()->toString() + "_getState(addr), addr"; |
| if(CHECK_INVALID_RESOURCE_STALLS) { |
| // FIXME - the current assumption is that in_buffer_rank is declared in the msg buffer peek statement |
| code += ", in_buffer_rank"; |
| } |
| code += ");\n"; |
| code += indent_str() + " if (result == TransitionResult_Valid) {\n"; |
| code += indent_str() + " counter++;\n"; |
| code += indent_str() + " continue; // Check the first port again\n"; |
| code += indent_str() + " }\n"; |
| code += indent_str() + " if (result == TransitionResult_ResourceStall) {\n"; |
| code += indent_str() + " g_eventQueue_ptr->scheduleEvent(this, 1);\n"; |
| code += indent_str() + " // Cannot do anything with this transition, go check next doable transition (mostly likely of next port)\n"; |
| code += indent_str() + " }\n"; |
| code += indent_str() + "}\n"; |
| } else if (*m_proc_name_ptr == "doubleTrigger") { |
| // NOTE: Use the doubleTrigger call with extreme caution |
| // the key to double trigger is the second event triggered cannot fail becuase the first event cannot be undone |
| assert(code_vec.size() == 4); |
| code += indent_str() + "{\n"; |
| code += indent_str() + " Address addr1 = "; |
| code += code_vec[1]; |
| code += ";\n"; |
| code += indent_str() + " TransitionResult result1 = doTransition("; |
| code += code_vec[0]; |
| code += ", " + g_sym_table.getStateMachine()->toString() + "_getState(addr1), addr1"; |
| if(CHECK_INVALID_RESOURCE_STALLS) { |
| // FIXME - the current assumption is that in_buffer_rank is declared in the msg buffer peek statement |
| code += ", in_buffer_rank"; |
| } |
| code += ");\n"; |
| code += indent_str() + " if (result1 == TransitionResult_Valid) {\n"; |
| code += indent_str() + " //this second event cannont fail because the first event already took effect\n"; |
| code += indent_str() + " Address addr2 = "; |
| code += code_vec[3]; |
| code += ";\n"; |
| code += indent_str() + " TransitionResult result2 = doTransition("; |
| code += code_vec[2]; |
| code += ", " + g_sym_table.getStateMachine()->toString() + "_getState(addr2), addr2"; |
| if(CHECK_INVALID_RESOURCE_STALLS) { |
| // FIXME - the current assumption is that in_buffer_rank is declared in the msg buffer peek statement |
| code += ", in_buffer_rank"; |
| } |
| code += ");\n"; |
| code += indent_str() + " assert(result2 == TransitionResult_Valid); // ensure the event suceeded\n"; |
| code += indent_str() + " counter++;\n"; |
| code += indent_str() + " continue; // Check the first port again\n"; |
| code += indent_str() + " }\n"; |
| code += indent_str() + " if (result1 == TransitionResult_ResourceStall) {\n"; |
| code += indent_str() + " g_eventQueue_ptr->scheduleEvent(this, 1);\n"; |
| code += indent_str() + " // Cannot do anything with this transition, go check next doable transition (mostly likely of next port)\n"; |
| code += indent_str() + " }\n"; |
| code += indent_str() + "}\n"; |
| } else if (*m_proc_name_ptr == "error") { |
| code += indent_str() + (*m_expr_vec_ptr)[0]->embedError(code_vec[0]) + "\n"; |
| } else if (*m_proc_name_ptr == "assert") { |
| code += indent_str() + "if (ASSERT_FLAG && !(" + code_vec[0] + ")) {\n"; |
| code += indent_str() + " " + (*m_expr_vec_ptr)[0]->embedError("\"assert failure\"") + "\n"; |
| code += indent_str() + "}\n"; |
| } else if (*m_proc_name_ptr == "continueProcessing") { |
| code += "counter++; continue; // Check the first port again"; |
| } else { |
| // Normal function |
| code += "("; |
| // if the func is internal to the chip but not the machine then it can only be |
| // accessed through the chip pointer |
| if (!func_ptr->existPair("external") && !func_ptr->isInternalMachineFunc()) { |
| code += "m_chip_ptr->"; |
| } |
| code += func_ptr->cIdent() + "("; |
| int size = code_vec.size(); |
| for(int i=0; i<size; i++) { |
| if (i != 0) { |
| code += ", "; |
| } |
| code += code_vec[i]; |
| } |
| code += "))"; |
| } |
| return func_ptr->getReturnType(); |
| } |
| |
| void FuncCallExprAST::print(ostream& out) const |
| { |
| out << "[FuncCallExpr: " << *m_proc_name_ptr << " " << *m_expr_vec_ptr << "]"; |
| } |