| /* |
| * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <cmath> |
| #include <iomanip> |
| |
| #include "base/intmath.hh" |
| #include "mem/ruby/common/Histogram.hh" |
| |
| using namespace std; |
| |
| Histogram::Histogram(int binsize, int bins) |
| { |
| m_binsize = binsize; |
| m_bins = bins; |
| clear(); |
| } |
| |
| Histogram::~Histogram() |
| { |
| } |
| |
| void |
| Histogram::clear(int binsize, int bins) |
| { |
| m_binsize = binsize; |
| clear(bins); |
| } |
| |
| void |
| Histogram::clear(int bins) |
| { |
| m_bins = bins; |
| m_largest_bin = 0; |
| m_max = 0; |
| m_data.resize(m_bins); |
| for (int i = 0; i < m_bins; i++) { |
| m_data[i] = 0; |
| } |
| m_count = 0; |
| m_max = 0; |
| |
| m_sumSamples = 0; |
| m_sumSquaredSamples = 0; |
| } |
| |
| |
| void |
| Histogram::add(int64 value) |
| { |
| assert(value >= 0); |
| m_max = max(m_max, value); |
| m_count++; |
| |
| m_sumSamples += value; |
| m_sumSquaredSamples += (value*value); |
| |
| int index; |
| if (m_binsize == -1) { |
| // This is a log base 2 histogram |
| if (value == 0) { |
| index = 0; |
| } else { |
| index = floorLog2(value) + 1; |
| if (index >= m_data.size()) { |
| index = m_data.size() - 1; |
| } |
| } |
| } else { |
| // This is a linear histogram |
| while (m_max >= (m_bins * m_binsize)) { |
| for (int i = 0; i < m_bins/2; i++) { |
| m_data[i] = m_data[i*2] + m_data[i*2 + 1]; |
| } |
| for (int i = m_bins/2; i < m_bins; i++) { |
| m_data[i] = 0; |
| } |
| m_binsize *= 2; |
| } |
| index = value/m_binsize; |
| } |
| assert(index >= 0); |
| m_data[index]++; |
| m_largest_bin = max(m_largest_bin, index); |
| } |
| |
| void |
| Histogram::add(const Histogram& hist) |
| { |
| assert(hist.getBins() == m_bins); |
| assert(hist.getBinSize() == -1); // assume log histogram |
| assert(m_binsize == -1); |
| |
| for (int j = 0; j < hist.getData(0); j++) { |
| add(0); |
| } |
| |
| for (int i = 1; i < m_bins; i++) { |
| for (int j = 0; j < hist.getData(i); j++) { |
| add(1<<(i-1)); // account for the + 1 index |
| } |
| } |
| } |
| |
| // Computation of standard deviation of samples a1, a2, ... aN |
| // variance = [SUM {ai^2} - (SUM {ai})^2/N]/(N-1) |
| // std deviation equals square root of variance |
| double |
| Histogram::getStandardDeviation() const |
| { |
| if (m_count <= 1) |
| return 0.0; |
| |
| double variance = |
| (double)(m_sumSquaredSamples - m_sumSamples * m_sumSamples / m_count) |
| / (m_count - 1); |
| return sqrt(variance); |
| } |
| |
| void |
| Histogram::print(ostream& out) const |
| { |
| printWithMultiplier(out, 1.0); |
| } |
| |
| void |
| Histogram::printPercent(ostream& out) const |
| { |
| if (m_count == 0) { |
| printWithMultiplier(out, 0.0); |
| } else { |
| printWithMultiplier(out, 100.0 / double(m_count)); |
| } |
| } |
| |
| void |
| Histogram::printWithMultiplier(ostream& out, double multiplier) const |
| { |
| if (m_binsize == -1) { |
| out << "[binsize: log2 "; |
| } else { |
| out << "[binsize: " << m_binsize << " "; |
| } |
| out << "max: " << m_max << " "; |
| out << "count: " << m_count << " "; |
| // out << "total: " << m_sumSamples << " "; |
| if (m_count == 0) { |
| out << "average: NaN |"; |
| out << "standard deviation: NaN |"; |
| } else { |
| out << "average: " << setw(5) << ((double) m_sumSamples)/m_count |
| << " | "; |
| out << "standard deviation: " << getStandardDeviation() << " |"; |
| } |
| for (int i = 0; i < m_bins && i <= m_largest_bin; i++) { |
| if (multiplier == 1.0) { |
| out << " " << m_data[i]; |
| } else { |
| out << " " << double(m_data[i]) * multiplier; |
| } |
| } |
| out << " ]"; |
| } |
| |
| bool |
| node_less_then_eq(const Histogram* n1, const Histogram* n2) |
| { |
| return (n1->size() > n2->size()); |
| } |