blob: 354634358e1ea8b68f188d98bca65c33f17dc70b [file] [log] [blame]
/*
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config/the_isa.hh"
#if THE_ISA == X86_ISA
#include "arch/x86/insts/microldstop.hh"
#endif // X86_ISA
#include "cpu/testers/rubytest/RubyTester.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "mem/ruby/system/RubyPort.hh"
#include "mem/physical.hh"
RubyPort::RubyPort(const Params *p)
: MemObject(p)
{
m_version = p->version;
assert(m_version != -1);
physmem = p->physmem;
m_controller = NULL;
m_mandatory_q_ptr = NULL;
m_request_cnt = 0;
pio_port = NULL;
physMemPort = NULL;
m_usingRubyTester = p->using_ruby_tester;
access_phys_mem = p->access_phys_mem;
}
void
RubyPort::init()
{
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
}
Port *
RubyPort::getPort(const std::string &if_name, int idx)
{
if (if_name == "port") {
return new M5Port(csprintf("%s-port%d", name(), idx), this,
access_phys_mem);
}
if (if_name == "pio_port") {
// ensure there is only one pio port
assert(pio_port == NULL);
pio_port = new PioPort(csprintf("%s-pio-port%d", name(), idx), this);
return pio_port;
}
if (if_name == "physMemPort") {
// RubyPort should only have one port to physical memory
assert (physMemPort == NULL);
physMemPort = new M5Port(csprintf("%s-physMemPort", name()), this,
access_phys_mem);
return physMemPort;
}
if (if_name == "functional") {
// Calls for the functional port only want to access
// functional memory. Therefore, directly pass these calls
// ports to physmem.
assert(physmem != NULL);
return physmem->getPort(if_name, idx);
}
return NULL;
}
RubyPort::PioPort::PioPort(const std::string &_name,
RubyPort *_port)
: SimpleTimingPort(_name, _port)
{
DPRINTF(RubyPort, "creating port to ruby sequencer to cpu %s\n", _name);
ruby_port = _port;
}
RubyPort::M5Port::M5Port(const std::string &_name,
RubyPort *_port, bool _access_phys_mem)
: SimpleTimingPort(_name, _port)
{
DPRINTF(RubyPort, "creating port from ruby sequcner to cpu %s\n", _name);
ruby_port = _port;
_onRetryList = false;
access_phys_mem = _access_phys_mem;
}
Tick
RubyPort::PioPort::recvAtomic(PacketPtr pkt)
{
panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
return 0;
}
Tick
RubyPort::M5Port::recvAtomic(PacketPtr pkt)
{
panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
return 0;
}
bool
RubyPort::PioPort::recvTiming(PacketPtr pkt)
{
// In FS mode, ruby memory will receive pio responses from devices
// and it must forward these responses back to the particular CPU.
DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr());
assert(pkt->isResponse());
// First we must retrieve the request port from the sender State
RubyPort::SenderState *senderState =
safe_cast<RubyPort::SenderState *>(pkt->senderState);
M5Port *port = senderState->port;
assert(port != NULL);
// pop the sender state from the packet
pkt->senderState = senderState->saved;
delete senderState;
port->sendTiming(pkt);
return true;
}
bool
RubyPort::M5Port::recvTiming(PacketPtr pkt)
{
DPRINTF(RubyPort,
"Timing access caught for address %#x\n", pkt->getAddr());
//dsm: based on SimpleTimingPort::recvTiming(pkt);
// The received packets should only be M5 requests, which should never
// get nacked. There used to be code to hanldle nacks here, but
// I'm pretty sure it didn't work correctly with the drain code,
// so that would need to be fixed if we ever added it back.
assert(pkt->isRequest());
if (pkt->memInhibitAsserted()) {
warn("memInhibitAsserted???");
// snooper will supply based on copy of packet
// still target's responsibility to delete packet
delete pkt;
return true;
}
// Save the port in the sender state object to be used later to
// route the response
pkt->senderState = new SenderState(this, pkt->senderState);
// Check for pio requests and directly send them to the dedicated
// pio port.
if (!isPhysMemAddress(pkt->getAddr())) {
assert(ruby_port->pio_port != NULL);
DPRINTF(RubyPort,
"Request for address 0x%#x is assumed to be a pio request\n",
pkt->getAddr());
return ruby_port->pio_port->sendTiming(pkt);
}
// For DMA and CPU requests, translate them to ruby requests before
// sending them to our assigned ruby port.
RubyRequestType type = RubyRequestType_NULL;
// If valid, copy the pc to the ruby request
Addr pc = 0;
if (pkt->req->hasPC()) {
pc = pkt->req->getPC();
}
if (pkt->isLLSC()) {
if (pkt->isWrite()) {
DPRINTF(RubyPort, "Issuing SC\n");
type = RubyRequestType_Store_Conditional;
} else {
DPRINTF(RubyPort, "Issuing LL\n");
assert(pkt->isRead());
type = RubyRequestType_Load_Linked;
}
} else if (pkt->req->isLocked()) {
if (pkt->isWrite()) {
DPRINTF(RubyPort, "Issuing Locked RMW Write\n");
type = RubyRequestType_Locked_RMW_Write;
} else {
DPRINTF(RubyPort, "Issuing Locked RMW Read\n");
assert(pkt->isRead());
type = RubyRequestType_Locked_RMW_Read;
}
} else {
if (pkt->isRead()) {
if (pkt->req->isInstFetch()) {
type = RubyRequestType_IFETCH;
} else {
#if THE_ISA == X86_ISA
uint32_t flags = pkt->req->getFlags();
bool storeCheck = flags &
(TheISA::StoreCheck << TheISA::FlagShift);
#else
bool storeCheck = false;
#endif // X86_ISA
if (storeCheck) {
type = RubyRequestType_RMW_Read;
} else {
type = RubyRequestType_LD;
}
}
} else if (pkt->isWrite()) {
//
// Note: M5 packets do not differentiate ST from RMW_Write
//
type = RubyRequestType_ST;
} else if (pkt->isFlush()) {
type = RubyRequestType_FLUSH;
} else {
panic("Unsupported ruby packet type\n");
}
}
RubyRequest ruby_request(pkt->getAddr(), pkt->getPtr<uint8_t>(true),
pkt->getSize(), pc, type,
RubyAccessMode_Supervisor, pkt);
assert(ruby_request.m_PhysicalAddress.getOffset() + ruby_request.m_Size <=
RubySystem::getBlockSizeBytes());
// Submit the ruby request
RequestStatus requestStatus = ruby_port->makeRequest(ruby_request);
// If the request successfully issued then we should return true.
// Otherwise, we need to delete the senderStatus we just created and return
// false.
if (requestStatus == RequestStatus_Issued) {
DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
return true;
}
//
// Unless one is using the ruby tester, record the stalled M5 port for
// later retry when the sequencer becomes free.
//
if (!ruby_port->m_usingRubyTester) {
ruby_port->addToRetryList(this);
}
DPRINTF(RubyPort,
"Request for address %#x did not issue because %s\n",
pkt->getAddr(), RequestStatus_to_string(requestStatus));
SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
pkt->senderState = senderState->saved;
delete senderState;
return false;
}
void
RubyPort::ruby_hit_callback(PacketPtr pkt)
{
// Retrieve the request port from the sender State
RubyPort::SenderState *senderState =
safe_cast<RubyPort::SenderState *>(pkt->senderState);
M5Port *port = senderState->port;
assert(port != NULL);
// pop the sender state from the packet
pkt->senderState = senderState->saved;
delete senderState;
port->hitCallback(pkt);
//
// If we had to stall the M5Ports, wake them up because the sequencer
// likely has free resources now.
//
if (waitingOnSequencer) {
//
// Record the current list of ports to retry on a temporary list before
// calling sendRetry on those ports. sendRetry will cause an
// immediate retry, which may result in the ports being put back on the
// list. Therefore we want to clear the retryList before calling
// sendRetry.
//
std::list<M5Port*> curRetryList(retryList);
retryList.clear();
waitingOnSequencer = false;
for (std::list<M5Port*>::iterator i = curRetryList.begin();
i != curRetryList.end(); ++i) {
DPRINTF(RubyPort,
"Sequencer may now be free. SendRetry to port %s\n",
(*i)->name());
(*i)->onRetryList(false);
(*i)->sendRetry();
}
}
}
void
RubyPort::M5Port::hitCallback(PacketPtr pkt)
{
bool needsResponse = pkt->needsResponse();
//
// Unless specified at configuraiton, all responses except failed SC
// and Flush operations access M5 physical memory.
//
bool accessPhysMem = access_phys_mem;
if (pkt->isLLSC()) {
if (pkt->isWrite()) {
if (pkt->req->getExtraData() != 0) {
//
// Successful SC packets convert to normal writes
//
pkt->convertScToWrite();
} else {
//
// Failed SC packets don't access physical memory and thus
// the RubyPort itself must convert it to a response.
//
accessPhysMem = false;
}
} else {
//
// All LL packets convert to normal loads so that M5 PhysMem does
// not lock the blocks.
//
pkt->convertLlToRead();
}
}
//
// Flush requests don't access physical memory
//
if (pkt->isFlush()) {
accessPhysMem = false;
}
DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
if (accessPhysMem) {
ruby_port->physMemPort->sendAtomic(pkt);
} else if (needsResponse) {
pkt->makeResponse();
}
// turn packet around to go back to requester if response expected
if (needsResponse) {
DPRINTF(RubyPort, "Sending packet back over port\n");
sendTiming(pkt);
} else {
delete pkt;
}
DPRINTF(RubyPort, "Hit callback done!\n");
}
bool
RubyPort::M5Port::sendTiming(PacketPtr pkt)
{
//minimum latency, must be > 0
schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
return true;
}
bool
RubyPort::PioPort::sendTiming(PacketPtr pkt)
{
//minimum latency, must be > 0
schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
return true;
}
bool
RubyPort::M5Port::isPhysMemAddress(Addr addr)
{
AddrRangeList physMemAddrList;
bool snoop = false;
ruby_port->physMemPort->getPeerAddressRanges(physMemAddrList, snoop);
for (AddrRangeIter iter = physMemAddrList.begin();
iter != physMemAddrList.end();
iter++) {
if (addr >= iter->start && addr <= iter->end) {
DPRINTF(RubyPort, "Request found in %#llx - %#llx range\n",
iter->start, iter->end);
return true;
}
}
return false;
}
unsigned
RubyPort::M5Port::deviceBlockSize() const
{
return (unsigned) RubySystem::getBlockSizeBytes();
}