| /* |
| * Copyright (c) 2009 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config/the_isa.hh" |
| #if THE_ISA == X86_ISA |
| #include "arch/x86/insts/microldstop.hh" |
| #endif // X86_ISA |
| #include "cpu/testers/rubytest/RubyTester.hh" |
| #include "mem/ruby/slicc_interface/AbstractController.hh" |
| #include "mem/ruby/system/RubyPort.hh" |
| #include "mem/physical.hh" |
| |
| RubyPort::RubyPort(const Params *p) |
| : MemObject(p) |
| { |
| m_version = p->version; |
| assert(m_version != -1); |
| |
| physmem = p->physmem; |
| |
| m_controller = NULL; |
| m_mandatory_q_ptr = NULL; |
| |
| m_request_cnt = 0; |
| pio_port = NULL; |
| physMemPort = NULL; |
| |
| m_usingRubyTester = p->using_ruby_tester; |
| access_phys_mem = p->access_phys_mem; |
| } |
| |
| void |
| RubyPort::init() |
| { |
| assert(m_controller != NULL); |
| m_mandatory_q_ptr = m_controller->getMandatoryQueue(); |
| } |
| |
| Port * |
| RubyPort::getPort(const std::string &if_name, int idx) |
| { |
| if (if_name == "port") { |
| return new M5Port(csprintf("%s-port%d", name(), idx), this, |
| access_phys_mem); |
| } |
| |
| if (if_name == "pio_port") { |
| // ensure there is only one pio port |
| assert(pio_port == NULL); |
| |
| pio_port = new PioPort(csprintf("%s-pio-port%d", name(), idx), this); |
| |
| return pio_port; |
| } |
| |
| if (if_name == "physMemPort") { |
| // RubyPort should only have one port to physical memory |
| assert (physMemPort == NULL); |
| |
| physMemPort = new M5Port(csprintf("%s-physMemPort", name()), this, |
| access_phys_mem); |
| |
| return physMemPort; |
| } |
| |
| if (if_name == "functional") { |
| // Calls for the functional port only want to access |
| // functional memory. Therefore, directly pass these calls |
| // ports to physmem. |
| assert(physmem != NULL); |
| return physmem->getPort(if_name, idx); |
| } |
| |
| return NULL; |
| } |
| |
| RubyPort::PioPort::PioPort(const std::string &_name, |
| RubyPort *_port) |
| : SimpleTimingPort(_name, _port) |
| { |
| DPRINTF(RubyPort, "creating port to ruby sequencer to cpu %s\n", _name); |
| ruby_port = _port; |
| } |
| |
| RubyPort::M5Port::M5Port(const std::string &_name, |
| RubyPort *_port, bool _access_phys_mem) |
| : SimpleTimingPort(_name, _port) |
| { |
| DPRINTF(RubyPort, "creating port from ruby sequcner to cpu %s\n", _name); |
| ruby_port = _port; |
| _onRetryList = false; |
| access_phys_mem = _access_phys_mem; |
| } |
| |
| Tick |
| RubyPort::PioPort::recvAtomic(PacketPtr pkt) |
| { |
| panic("RubyPort::PioPort::recvAtomic() not implemented!\n"); |
| return 0; |
| } |
| |
| Tick |
| RubyPort::M5Port::recvAtomic(PacketPtr pkt) |
| { |
| panic("RubyPort::M5Port::recvAtomic() not implemented!\n"); |
| return 0; |
| } |
| |
| |
| bool |
| RubyPort::PioPort::recvTiming(PacketPtr pkt) |
| { |
| // In FS mode, ruby memory will receive pio responses from devices |
| // and it must forward these responses back to the particular CPU. |
| DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr()); |
| |
| assert(pkt->isResponse()); |
| |
| // First we must retrieve the request port from the sender State |
| RubyPort::SenderState *senderState = |
| safe_cast<RubyPort::SenderState *>(pkt->senderState); |
| M5Port *port = senderState->port; |
| assert(port != NULL); |
| |
| // pop the sender state from the packet |
| pkt->senderState = senderState->saved; |
| delete senderState; |
| |
| port->sendTiming(pkt); |
| |
| return true; |
| } |
| |
| bool |
| RubyPort::M5Port::recvTiming(PacketPtr pkt) |
| { |
| DPRINTF(RubyPort, |
| "Timing access caught for address %#x\n", pkt->getAddr()); |
| |
| //dsm: based on SimpleTimingPort::recvTiming(pkt); |
| |
| // The received packets should only be M5 requests, which should never |
| // get nacked. There used to be code to hanldle nacks here, but |
| // I'm pretty sure it didn't work correctly with the drain code, |
| // so that would need to be fixed if we ever added it back. |
| assert(pkt->isRequest()); |
| |
| if (pkt->memInhibitAsserted()) { |
| warn("memInhibitAsserted???"); |
| // snooper will supply based on copy of packet |
| // still target's responsibility to delete packet |
| delete pkt; |
| return true; |
| } |
| |
| // Save the port in the sender state object to be used later to |
| // route the response |
| pkt->senderState = new SenderState(this, pkt->senderState); |
| |
| // Check for pio requests and directly send them to the dedicated |
| // pio port. |
| if (!isPhysMemAddress(pkt->getAddr())) { |
| assert(ruby_port->pio_port != NULL); |
| DPRINTF(RubyPort, |
| "Request for address 0x%#x is assumed to be a pio request\n", |
| pkt->getAddr()); |
| |
| return ruby_port->pio_port->sendTiming(pkt); |
| } |
| |
| // For DMA and CPU requests, translate them to ruby requests before |
| // sending them to our assigned ruby port. |
| RubyRequestType type = RubyRequestType_NULL; |
| |
| // If valid, copy the pc to the ruby request |
| Addr pc = 0; |
| if (pkt->req->hasPC()) { |
| pc = pkt->req->getPC(); |
| } |
| |
| if (pkt->isLLSC()) { |
| if (pkt->isWrite()) { |
| DPRINTF(RubyPort, "Issuing SC\n"); |
| type = RubyRequestType_Store_Conditional; |
| } else { |
| DPRINTF(RubyPort, "Issuing LL\n"); |
| assert(pkt->isRead()); |
| type = RubyRequestType_Load_Linked; |
| } |
| } else if (pkt->req->isLocked()) { |
| if (pkt->isWrite()) { |
| DPRINTF(RubyPort, "Issuing Locked RMW Write\n"); |
| type = RubyRequestType_Locked_RMW_Write; |
| } else { |
| DPRINTF(RubyPort, "Issuing Locked RMW Read\n"); |
| assert(pkt->isRead()); |
| type = RubyRequestType_Locked_RMW_Read; |
| } |
| } else { |
| if (pkt->isRead()) { |
| if (pkt->req->isInstFetch()) { |
| type = RubyRequestType_IFETCH; |
| } else { |
| #if THE_ISA == X86_ISA |
| uint32_t flags = pkt->req->getFlags(); |
| bool storeCheck = flags & |
| (TheISA::StoreCheck << TheISA::FlagShift); |
| #else |
| bool storeCheck = false; |
| #endif // X86_ISA |
| if (storeCheck) { |
| type = RubyRequestType_RMW_Read; |
| } else { |
| type = RubyRequestType_LD; |
| } |
| } |
| } else if (pkt->isWrite()) { |
| // |
| // Note: M5 packets do not differentiate ST from RMW_Write |
| // |
| type = RubyRequestType_ST; |
| } else if (pkt->isFlush()) { |
| type = RubyRequestType_FLUSH; |
| } else { |
| panic("Unsupported ruby packet type\n"); |
| } |
| } |
| |
| RubyRequest ruby_request(pkt->getAddr(), pkt->getPtr<uint8_t>(true), |
| pkt->getSize(), pc, type, |
| RubyAccessMode_Supervisor, pkt); |
| |
| assert(ruby_request.m_PhysicalAddress.getOffset() + ruby_request.m_Size <= |
| RubySystem::getBlockSizeBytes()); |
| |
| // Submit the ruby request |
| RequestStatus requestStatus = ruby_port->makeRequest(ruby_request); |
| |
| // If the request successfully issued then we should return true. |
| // Otherwise, we need to delete the senderStatus we just created and return |
| // false. |
| if (requestStatus == RequestStatus_Issued) { |
| DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr()); |
| return true; |
| } |
| |
| // |
| // Unless one is using the ruby tester, record the stalled M5 port for |
| // later retry when the sequencer becomes free. |
| // |
| if (!ruby_port->m_usingRubyTester) { |
| ruby_port->addToRetryList(this); |
| } |
| |
| DPRINTF(RubyPort, |
| "Request for address %#x did not issue because %s\n", |
| pkt->getAddr(), RequestStatus_to_string(requestStatus)); |
| |
| SenderState* senderState = safe_cast<SenderState*>(pkt->senderState); |
| pkt->senderState = senderState->saved; |
| delete senderState; |
| return false; |
| } |
| |
| void |
| RubyPort::ruby_hit_callback(PacketPtr pkt) |
| { |
| // Retrieve the request port from the sender State |
| RubyPort::SenderState *senderState = |
| safe_cast<RubyPort::SenderState *>(pkt->senderState); |
| M5Port *port = senderState->port; |
| assert(port != NULL); |
| |
| // pop the sender state from the packet |
| pkt->senderState = senderState->saved; |
| delete senderState; |
| |
| port->hitCallback(pkt); |
| |
| // |
| // If we had to stall the M5Ports, wake them up because the sequencer |
| // likely has free resources now. |
| // |
| if (waitingOnSequencer) { |
| // |
| // Record the current list of ports to retry on a temporary list before |
| // calling sendRetry on those ports. sendRetry will cause an |
| // immediate retry, which may result in the ports being put back on the |
| // list. Therefore we want to clear the retryList before calling |
| // sendRetry. |
| // |
| std::list<M5Port*> curRetryList(retryList); |
| |
| retryList.clear(); |
| waitingOnSequencer = false; |
| |
| for (std::list<M5Port*>::iterator i = curRetryList.begin(); |
| i != curRetryList.end(); ++i) { |
| DPRINTF(RubyPort, |
| "Sequencer may now be free. SendRetry to port %s\n", |
| (*i)->name()); |
| (*i)->onRetryList(false); |
| (*i)->sendRetry(); |
| } |
| } |
| } |
| |
| void |
| RubyPort::M5Port::hitCallback(PacketPtr pkt) |
| { |
| bool needsResponse = pkt->needsResponse(); |
| |
| // |
| // Unless specified at configuraiton, all responses except failed SC |
| // and Flush operations access M5 physical memory. |
| // |
| bool accessPhysMem = access_phys_mem; |
| |
| if (pkt->isLLSC()) { |
| if (pkt->isWrite()) { |
| if (pkt->req->getExtraData() != 0) { |
| // |
| // Successful SC packets convert to normal writes |
| // |
| pkt->convertScToWrite(); |
| } else { |
| // |
| // Failed SC packets don't access physical memory and thus |
| // the RubyPort itself must convert it to a response. |
| // |
| accessPhysMem = false; |
| } |
| } else { |
| // |
| // All LL packets convert to normal loads so that M5 PhysMem does |
| // not lock the blocks. |
| // |
| pkt->convertLlToRead(); |
| } |
| } |
| |
| // |
| // Flush requests don't access physical memory |
| // |
| if (pkt->isFlush()) { |
| accessPhysMem = false; |
| } |
| |
| DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); |
| |
| if (accessPhysMem) { |
| ruby_port->physMemPort->sendAtomic(pkt); |
| } else if (needsResponse) { |
| pkt->makeResponse(); |
| } |
| |
| // turn packet around to go back to requester if response expected |
| if (needsResponse) { |
| DPRINTF(RubyPort, "Sending packet back over port\n"); |
| sendTiming(pkt); |
| } else { |
| delete pkt; |
| } |
| DPRINTF(RubyPort, "Hit callback done!\n"); |
| } |
| |
| bool |
| RubyPort::M5Port::sendTiming(PacketPtr pkt) |
| { |
| //minimum latency, must be > 0 |
| schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock())); |
| return true; |
| } |
| |
| bool |
| RubyPort::PioPort::sendTiming(PacketPtr pkt) |
| { |
| //minimum latency, must be > 0 |
| schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock())); |
| return true; |
| } |
| |
| bool |
| RubyPort::M5Port::isPhysMemAddress(Addr addr) |
| { |
| AddrRangeList physMemAddrList; |
| bool snoop = false; |
| ruby_port->physMemPort->getPeerAddressRanges(physMemAddrList, snoop); |
| for (AddrRangeIter iter = physMemAddrList.begin(); |
| iter != physMemAddrList.end(); |
| iter++) { |
| if (addr >= iter->start && addr <= iter->end) { |
| DPRINTF(RubyPort, "Request found in %#llx - %#llx range\n", |
| iter->start, iter->end); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| unsigned |
| RubyPort::M5Port::deviceBlockSize() const |
| { |
| return (unsigned) RubySystem::getBlockSizeBytes(); |
| } |