blob: c1afb4720c9a3aeb51acaab756fc7e46bd85420a [file] [log] [blame]
/*
* Copyright (c) 2011 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_O3_BPRED_UNIT_HH__
#define __CPU_O3_BPRED_UNIT_HH__
#include <list>
#include "base/statistics.hh"
#include "base/types.hh"
#include "cpu/pred/2bit_local.hh"
#include "cpu/pred/btb.hh"
#include "cpu/pred/ras.hh"
#include "cpu/pred/tournament.hh"
#include "cpu/inst_seq.hh"
struct DerivO3CPUParams;
/**
* Basically a wrapper class to hold both the branch predictor
* and the BTB.
*/
template<class Impl>
class BPredUnit
{
private:
typedef typename Impl::DynInstPtr DynInstPtr;
enum PredType {
Local,
Tournament
};
PredType predictor;
const std::string _name;
public:
/**
* @param params The params object, that has the size of the BP and BTB.
*/
BPredUnit(DerivO3CPUParams *params);
const std::string &name() const { return _name; }
/**
* Registers statistics.
*/
void regStats();
void switchOut();
void takeOverFrom();
/**
* Predicts whether or not the instruction is a taken branch, and the
* target of the branch if it is taken.
* @param inst The branch instruction.
* @param PC The predicted PC is passed back through this parameter.
* @param tid The thread id.
* @return Returns if the branch is taken or not.
*/
bool predict(DynInstPtr &inst, TheISA::PCState &pc, ThreadID tid);
// @todo: Rename this function.
void BPUncond(void * &bp_history);
/**
* Tells the branch predictor to commit any updates until the given
* sequence number.
* @param done_sn The sequence number to commit any older updates up until.
* @param tid The thread id.
*/
void update(const InstSeqNum &done_sn, ThreadID tid);
/**
* Squashes all outstanding updates until a given sequence number.
* @param squashed_sn The sequence number to squash any younger updates up
* until.
* @param tid The thread id.
*/
void squash(const InstSeqNum &squashed_sn, ThreadID tid);
/**
* Squashes all outstanding updates until a given sequence number, and
* corrects that sn's update with the proper address and taken/not taken.
* @param squashed_sn The sequence number to squash any younger updates up
* until.
* @param corr_target The correct branch target.
* @param actually_taken The correct branch direction.
* @param tid The thread id.
*/
void squash(const InstSeqNum &squashed_sn,
const TheISA::PCState &corr_target,
bool actually_taken, ThreadID tid);
/**
* @param bp_history Pointer to the history object. The predictor
* will need to update any state and delete the object.
*/
void BPSquash(void *bp_history);
/**
* Looks up a given PC in the BP to see if it is taken or not taken.
* @param inst_PC The PC to look up.
* @param bp_history Pointer that will be set to an object that
* has the branch predictor state associated with the lookup.
* @return Whether the branch is taken or not taken.
*/
bool BPLookup(Addr instPC, void * &bp_history);
/**
* If a branch is not taken, because the BTB address is invalid or missing,
* this function sets the appropriate counter in the global and local
* predictors to not taken.
* @param inst_PC The PC to look up the local predictor.
* @param bp_history Pointer that will be set to an object that
* has the branch predictor state associated with the lookup.
*/
void BPBTBUpdate(Addr instPC, void * &bp_history);
/**
* Looks up a given PC in the BTB to see if a matching entry exists.
* @param inst_PC The PC to look up.
* @return Whether the BTB contains the given PC.
*/
bool BTBValid(Addr instPC)
{ return BTB.valid(instPC, 0); }
/**
* Looks up a given PC in the BTB to get the predicted target.
* @param inst_PC The PC to look up.
* @return The address of the target of the branch.
*/
TheISA::PCState BTBLookup(Addr instPC)
{ return BTB.lookup(instPC, 0); }
/**
* Updates the BP with taken/not taken information.
* @param inst_PC The branch's PC that will be updated.
* @param taken Whether the branch was taken or not taken.
* @param bp_history Pointer to the branch predictor state that is
* associated with the branch lookup that is being updated.
* @param squashed Set to true when this function is called during a
* squash operation.
* @todo Make this update flexible enough to handle a global predictor.
*/
void BPUpdate(Addr instPC, bool taken, void *bp_history, bool squashed);
/**
* Updates the BTB with the target of a branch.
* @param inst_PC The branch's PC that will be updated.
* @param target_PC The branch's target that will be added to the BTB.
*/
void BTBUpdate(Addr instPC, const TheISA::PCState &target)
{ BTB.update(instPC, target, 0); }
void dump();
private:
struct PredictorHistory {
/**
* Makes a predictor history struct that contains any
* information needed to update the predictor, BTB, and RAS.
*/
PredictorHistory(const InstSeqNum &seq_num, Addr instPC,
bool pred_taken, void *bp_history,
ThreadID _tid)
: seqNum(seq_num), pc(instPC), bpHistory(bp_history), RASTarget(0),
RASIndex(0), tid(_tid), predTaken(pred_taken), usedRAS(0), pushedRAS(0),
wasCall(0), wasReturn(0), validBTB(0)
{}
bool operator==(const PredictorHistory &entry) const {
return this->seqNum == entry.seqNum;
}
/** The sequence number for the predictor history entry. */
InstSeqNum seqNum;
/** The PC associated with the sequence number. */
Addr pc;
/** Pointer to the history object passed back from the branch
* predictor. It is used to update or restore state of the
* branch predictor.
*/
void *bpHistory;
/** The RAS target (only valid if a return). */
TheISA::PCState RASTarget;
/** The RAS index of the instruction (only valid if a call). */
unsigned RASIndex;
/** The thread id. */
ThreadID tid;
/** Whether or not it was predicted taken. */
bool predTaken;
/** Whether or not the RAS was used. */
bool usedRAS;
/* Wether or not the RAS was pushed */
bool pushedRAS;
/** Whether or not the instruction was a call. */
bool wasCall;
/** Whether or not the instruction was a return. */
bool wasReturn;
/** Whether or not the instruction had a valid BTB entry. */
bool validBTB;
};
typedef std::list<PredictorHistory> History;
typedef typename History::iterator HistoryIt;
/**
* The per-thread predictor history. This is used to update the predictor
* as instructions are committed, or restore it to the proper state after
* a squash.
*/
History predHist[Impl::MaxThreads];
/** The local branch predictor. */
LocalBP *localBP;
/** The tournament branch predictor. */
TournamentBP *tournamentBP;
/** The BTB. */
DefaultBTB BTB;
/** The per-thread return address stack. */
ReturnAddrStack RAS[Impl::MaxThreads];
/** Stat for number of BP lookups. */
Stats::Scalar lookups;
/** Stat for number of conditional branches predicted. */
Stats::Scalar condPredicted;
/** Stat for number of conditional branches predicted incorrectly. */
Stats::Scalar condIncorrect;
/** Stat for number of BTB lookups. */
Stats::Scalar BTBLookups;
/** Stat for number of BTB hits. */
Stats::Scalar BTBHits;
/** Stat for number of times the BTB is correct. */
Stats::Scalar BTBCorrect;
/** Stat for number of times the RAS is used to get a target. */
Stats::Scalar usedRAS;
/** Stat for number of times the RAS is incorrect. */
Stats::Scalar RASIncorrect;
};
#endif // __CPU_O3_BPRED_UNIT_HH__