blob: 33b53ca925c6ad6d0fc1e42d751409dba9e08e59 [file] [log] [blame]
/*
* Copyright (c) 2007 The Hewlett-Packard Development Company
* Copyright (c) 2011 Advanced Micro Devices, Inc.
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#include "arch/x86/utility.hh"
#include "arch/x86/interrupts.hh"
#include "arch/x86/registers.hh"
#include "arch/x86/x86_traits.hh"
#include "cpu/base.hh"
#include "fputils/fp80.h"
#include "sim/full_system.hh"
namespace X86ISA {
uint64_t
getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp)
{
if (fp) {
panic("getArgument(): Floating point arguments not implemented\n");
} else if (size != 8) {
panic("getArgument(): Can only handle 64-bit arguments.\n");
}
// The first 6 integer arguments are passed in registers, the rest
// are passed on the stack.
const int int_reg_map[] = {
INTREG_RDI, INTREG_RSI, INTREG_RDX,
INTREG_RCX, INTREG_R8, INTREG_R9
};
if (number < sizeof(int_reg_map) / sizeof(*int_reg_map)) {
return tc->readIntReg(int_reg_map[number]);
} else {
panic("getArgument(): Don't know how to handle stack arguments.\n");
}
}
void initCPU(ThreadContext *tc, int cpuId)
{
// This function is essentially performing a reset. The actual INIT
// interrupt does a subset of this, so we'll piggyback on some of its
// functionality.
InitInterrupt init(0);
init.invoke(tc);
PCState pc = tc->pcState();
pc.upc(0);
pc.nupc(1);
tc->pcState(pc);
// These next two loops zero internal microcode and implicit registers.
// They aren't specified by the ISA but are used internally by M5's
// implementation.
for (int index = 0; index < NumMicroIntRegs; index++) {
tc->setIntReg(INTREG_MICRO(index), 0);
}
for (int index = 0; index < NumImplicitIntRegs; index++) {
tc->setIntReg(INTREG_IMPLICIT(index), 0);
}
// Set integer register EAX to 0 to indicate that the optional BIST
// passed. No BIST actually runs, but software may still check this
// register for errors.
tc->setIntReg(INTREG_RAX, 0);
tc->setMiscReg(MISCREG_CR0, 0x0000000060000010ULL);
tc->setMiscReg(MISCREG_CR8, 0);
// TODO initialize x87, 64 bit, and 128 bit media state
tc->setMiscReg(MISCREG_MTRRCAP, 0x0508);
for (int i = 0; i < 8; i++) {
tc->setMiscReg(MISCREG_MTRR_PHYS_BASE(i), 0);
tc->setMiscReg(MISCREG_MTRR_PHYS_MASK(i), 0);
}
tc->setMiscReg(MISCREG_MTRR_FIX_64K_00000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_16K_80000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_16K_A0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_C0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_C8000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_D0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_D8000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_E0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_E8000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_F0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_F8000, 0);
tc->setMiscReg(MISCREG_DEF_TYPE, 0);
tc->setMiscReg(MISCREG_MCG_CAP, 0x104);
tc->setMiscReg(MISCREG_MCG_STATUS, 0);
tc->setMiscReg(MISCREG_MCG_CTL, 0);
for (int i = 0; i < 5; i++) {
tc->setMiscReg(MISCREG_MC_CTL(i), 0);
tc->setMiscReg(MISCREG_MC_STATUS(i), 0);
tc->setMiscReg(MISCREG_MC_ADDR(i), 0);
tc->setMiscReg(MISCREG_MC_MISC(i), 0);
}
tc->setMiscReg(MISCREG_TSC, 0);
tc->setMiscReg(MISCREG_TSC_AUX, 0);
for (int i = 0; i < 4; i++) {
tc->setMiscReg(MISCREG_PERF_EVT_SEL(i), 0);
tc->setMiscReg(MISCREG_PERF_EVT_CTR(i), 0);
}
tc->setMiscReg(MISCREG_STAR, 0);
tc->setMiscReg(MISCREG_LSTAR, 0);
tc->setMiscReg(MISCREG_CSTAR, 0);
tc->setMiscReg(MISCREG_SF_MASK, 0);
tc->setMiscReg(MISCREG_KERNEL_GS_BASE, 0);
tc->setMiscReg(MISCREG_SYSENTER_CS, 0);
tc->setMiscReg(MISCREG_SYSENTER_ESP, 0);
tc->setMiscReg(MISCREG_SYSENTER_EIP, 0);
tc->setMiscReg(MISCREG_PAT, 0x0007040600070406ULL);
tc->setMiscReg(MISCREG_SYSCFG, 0x20601);
tc->setMiscReg(MISCREG_IORR_BASE0, 0);
tc->setMiscReg(MISCREG_IORR_BASE1, 0);
tc->setMiscReg(MISCREG_IORR_MASK0, 0);
tc->setMiscReg(MISCREG_IORR_MASK1, 0);
tc->setMiscReg(MISCREG_TOP_MEM, 0x4000000);
tc->setMiscReg(MISCREG_TOP_MEM2, 0x0);
tc->setMiscReg(MISCREG_DEBUG_CTL_MSR, 0);
tc->setMiscReg(MISCREG_LAST_BRANCH_FROM_IP, 0);
tc->setMiscReg(MISCREG_LAST_BRANCH_TO_IP, 0);
tc->setMiscReg(MISCREG_LAST_EXCEPTION_FROM_IP, 0);
tc->setMiscReg(MISCREG_LAST_EXCEPTION_TO_IP, 0);
// Invalidate the caches (this should already be done for us)
LocalApicBase lApicBase = 0;
lApicBase.base = 0xFEE00000 >> 12;
lApicBase.enable = 1;
lApicBase.bsp = (cpuId == 0);
tc->setMiscReg(MISCREG_APIC_BASE, lApicBase);
Interrupts * interrupts = dynamic_cast<Interrupts *>(
tc->getCpuPtr()->getInterruptController(0));
assert(interrupts);
interrupts->setRegNoEffect(APIC_ID, cpuId << 24);
interrupts->setRegNoEffect(APIC_VERSION, (5 << 16) | 0x14);
// TODO Set the SMRAM base address (SMBASE) to 0x00030000
tc->setMiscReg(MISCREG_VM_CR, 0);
tc->setMiscReg(MISCREG_IGNNE, 0);
tc->setMiscReg(MISCREG_SMM_CTL, 0);
tc->setMiscReg(MISCREG_VM_HSAVE_PA, 0);
}
void startupCPU(ThreadContext *tc, int cpuId)
{
if (cpuId == 0 || !FullSystem) {
tc->activate();
} else {
// This is an application processor (AP). It should be initialized to
// look like only the BIOS POST has run on it and put then put it into
// a halted state.
tc->suspend();
}
}
void
copyMiscRegs(ThreadContext *src, ThreadContext *dest)
{
// This function assumes no side effects other than TLB invalidation
// need to be considered while copying state. That will likely not be
// true in the future.
for (int i = 0; i < NUM_MISCREGS; ++i) {
if (!isValidMiscReg(i))
continue;
dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i));
}
// The TSC has to be updated with side-effects if the CPUs in a
// CPU switch have different frequencies.
dest->setMiscReg(MISCREG_TSC, src->readMiscReg(MISCREG_TSC));
dest->getITBPtr()->flushAll();
dest->getDTBPtr()->flushAll();
}
void
copyRegs(ThreadContext *src, ThreadContext *dest)
{
//copy int regs
for (int i = 0; i < NumIntRegs; ++i)
dest->setIntRegFlat(i, src->readIntRegFlat(i));
//copy float regs
for (int i = 0; i < NumFloatRegs; ++i)
dest->setFloatRegBitsFlat(i, src->readFloatRegBitsFlat(i));
//copy condition-code regs
for (int i = 0; i < NumCCRegs; ++i)
dest->setCCRegFlat(i, src->readCCRegFlat(i));
copyMiscRegs(src, dest);
dest->pcState(src->pcState());
}
void
skipFunction(ThreadContext *tc)
{
panic("Not implemented for x86\n");
}
uint64_t
getRFlags(ThreadContext *tc)
{
const uint64_t ncc_flags(tc->readMiscRegNoEffect(MISCREG_RFLAGS));
const uint64_t cc_flags(tc->readCCReg(X86ISA::CCREG_ZAPS));
const uint64_t cfof_bits(tc->readCCReg(X86ISA::CCREG_CFOF));
const uint64_t df_bit(tc->readCCReg(X86ISA::CCREG_DF));
// ecf (PSEUDO(3)) & ezf (PSEUDO(4)) are only visible to
// microcode, so we can safely ignore them.
// Reconstruct the real rflags state, mask out internal flags, and
// make sure reserved bits have the expected values.
return ((ncc_flags | cc_flags | cfof_bits | df_bit) & 0x3F7FD5)
| 0x2;
}
void
setRFlags(ThreadContext *tc, uint64_t val)
{
tc->setCCReg(X86ISA::CCREG_ZAPS, val & ccFlagMask);
tc->setCCReg(X86ISA::CCREG_CFOF, val & cfofMask);
tc->setCCReg(X86ISA::CCREG_DF, val & DFBit);
// Internal microcode registers (ECF & EZF)
tc->setCCReg(X86ISA::CCREG_ECF, 0);
tc->setCCReg(X86ISA::CCREG_EZF, 0);
// Update the RFLAGS misc reg with whatever didn't go into the
// magic registers.
tc->setMiscReg(MISCREG_RFLAGS, val & ~(ccFlagMask | cfofMask | DFBit));
}
uint8_t
convX87TagsToXTags(uint16_t ftw)
{
uint8_t ftwx(0);
for (int i = 0; i < 8; ++i) {
// Extract the tag for the current element on the FP stack
const unsigned tag((ftw >> (2 * i)) & 0x3);
/*
* Check the type of the current FP element. Valid values are:
* 0 == Valid
* 1 == Zero
* 2 == Special (Nan, unsupported, infinity, denormal)
* 3 == Empty
*/
// The xsave version of the tag word only keeps track of
// whether the element is empty or not. Set the corresponding
// bit in the ftwx if it's not empty,
if (tag != 0x3)
ftwx |= 1 << i;
}
return ftwx;
}
uint16_t
convX87XTagsToTags(uint8_t ftwx)
{
uint16_t ftw(0);
for (int i = 0; i < 8; ++i) {
const unsigned xtag(((ftwx >> i) & 0x1));
// The xtag for an x87 stack position is 0 for empty stack positions.
if (!xtag) {
// Set the tag word to 3 (empty) for the current element.
ftw |= 0x3 << (2 * i);
} else {
// TODO: We currently assume that non-empty elements are
// valid (0x0), but we should ideally reconstruct the full
// state (valid/zero/special).
}
}
return ftw;
}
uint16_t
genX87Tags(uint16_t ftw, uint8_t top, int8_t spm)
{
const uint8_t new_top((top + spm + 8) % 8);
if (spm > 0) {
// Removing elements from the stack. Flag the elements as empty.
for (int i = top; i != new_top; i = (i + 1 + 8) % 8)
ftw |= 0x3 << (2 * i);
} else if (spm < 0) {
// Adding elements to the stack. Flag the new elements as
// valid. We should ideally decode them and "do the right
// thing".
for (int i = new_top; i != top; i = (i + 1 + 8) % 8)
ftw &= ~(0x3 << (2 * i));
}
return ftw;
}
double
loadFloat80(const void *_mem)
{
fp80_t fp80;
memcpy(fp80.bits, _mem, 10);
return fp80_cvtd(fp80);
}
void
storeFloat80(void *_mem, double value)
{
fp80_t fp80 = fp80_cvfd(value);
memcpy(_mem, fp80.bits, 10);
}
} // namespace X86_ISA