| /***************************************************************************** |
| * McPAT/CACTI |
| * SOFTWARE LICENSE AGREEMENT |
| * Copyright 2012 Hewlett-Packard Development Company, L.P. |
| * Copyright (c) 2010-2013 Advanced Micro Devices, Inc. |
| * All Rights Reserved |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| ***************************************************************************/ |
| |
| |
| |
| #include <iomanip> |
| #include <iostream> |
| #include <string> |
| |
| #include "area.h" |
| #include "parameter.h" |
| |
| using namespace std; |
| |
| |
| InputParameter * g_ip; |
| TechnologyParameter g_tp; |
| |
| |
| |
| void TechnologyParameter::DeviceType::display(uint32_t indent) { |
| string indent_str(indent, ' '); |
| |
| cout << indent_str << "C_g_ideal = " << setw(12) << C_g_ideal << " F/um" << endl; |
| cout << indent_str << "C_fringe = " << setw(12) << C_fringe << " F/um" << endl; |
| cout << indent_str << "C_overlap = " << setw(12) << C_overlap << " F/um" << endl; |
| cout << indent_str << "C_junc = " << setw(12) << C_junc << " F/um^2" << endl; |
| cout << indent_str << "l_phy = " << setw(12) << l_phy << " um" << endl; |
| cout << indent_str << "l_elec = " << setw(12) << l_elec << " um" << endl; |
| cout << indent_str << "R_nch_on = " << setw(12) << R_nch_on << " ohm-um" << endl; |
| cout << indent_str << "R_pch_on = " << setw(12) << R_pch_on << " ohm-um" << endl; |
| cout << indent_str << "Vdd = " << setw(12) << Vdd << " V" << endl; |
| cout << indent_str << "Vth = " << setw(12) << Vth << " V" << endl; |
| cout << indent_str << "I_on_n = " << setw(12) << I_on_n << " A/um" << endl; |
| cout << indent_str << "I_on_p = " << setw(12) << I_on_p << " A/um" << endl; |
| cout << indent_str << "I_off_n = " << setw(12) << I_off_n << " A/um" << endl; |
| cout << indent_str << "I_off_p = " << setw(12) << I_off_p << " A/um" << endl; |
| cout << indent_str << "C_ox = " << setw(12) << C_ox << " F/um^2" << endl; |
| cout << indent_str << "t_ox = " << setw(12) << t_ox << " um" << endl; |
| cout << indent_str << "n_to_p_eff_curr_drv_ratio = " << n_to_p_eff_curr_drv_ratio << endl; |
| } |
| |
| |
| |
| void TechnologyParameter::InterconnectType::display(uint32_t indent) { |
| string indent_str(indent, ' '); |
| |
| cout << indent_str << "pitch = " << setw(12) << pitch << " um" << endl; |
| cout << indent_str << "R_per_um = " << setw(12) << R_per_um << " ohm/um" << endl; |
| cout << indent_str << "C_per_um = " << setw(12) << C_per_um << " F/um" << endl; |
| } |
| |
| void TechnologyParameter::ScalingFactor::display(uint32_t indent) { |
| string indent_str(indent, ' '); |
| |
| cout << indent_str << "logic_scaling_co_eff = " << setw(12) << logic_scaling_co_eff << endl; |
| cout << indent_str << "curr_core_tx_density = " << setw(12) << core_tx_density << " # of tx/um^2" << endl; |
| } |
| |
| void TechnologyParameter::MemoryType::display(uint32_t indent) { |
| string indent_str(indent, ' '); |
| |
| cout << indent_str << "b_w = " << setw(12) << b_w << " um" << endl; |
| cout << indent_str << "b_h = " << setw(12) << b_h << " um" << endl; |
| cout << indent_str << "cell_a_w = " << setw(12) << cell_a_w << " um" << endl; |
| cout << indent_str << "cell_pmos_w = " << setw(12) << cell_pmos_w << " um" << endl; |
| cout << indent_str << "cell_nmos_w = " << setw(12) << cell_nmos_w << " um" << endl; |
| cout << indent_str << "Vbitpre = " << setw(12) << Vbitpre << " V" << endl; |
| } |
| |
| |
| |
| void TechnologyParameter::display(uint32_t indent) { |
| string indent_str(indent, ' '); |
| |
| cout << indent_str << "ram_wl_stitching_overhead_ = " << setw(12) << ram_wl_stitching_overhead_ << " um" << endl; |
| cout << indent_str << "min_w_nmos_ = " << setw(12) << min_w_nmos_ << " um" << endl; |
| cout << indent_str << "max_w_nmos_ = " << setw(12) << max_w_nmos_ << " um" << endl; |
| cout << indent_str << "unit_len_wire_del = " << setw(12) << unit_len_wire_del << " s/um^2" << endl; |
| cout << indent_str << "FO4 = " << setw(12) << FO4 << " s" << endl; |
| cout << indent_str << "kinv = " << setw(12) << kinv << " s" << endl; |
| cout << indent_str << "vpp = " << setw(12) << vpp << " V" << endl; |
| cout << indent_str << "w_sense_en = " << setw(12) << w_sense_en << " um" << endl; |
| cout << indent_str << "w_sense_n = " << setw(12) << w_sense_n << " um" << endl; |
| cout << indent_str << "w_sense_p = " << setw(12) << w_sense_p << " um" << endl; |
| cout << indent_str << "w_iso = " << setw(12) << w_iso << " um" << endl; |
| cout << indent_str << "w_poly_contact = " << setw(12) << w_poly_contact << " um" << endl; |
| cout << indent_str << "spacing_poly_to_poly = " << setw(12) << spacing_poly_to_poly << " um" << endl; |
| cout << indent_str << "spacing_poly_to_contact = " << setw(12) << spacing_poly_to_contact << " um" << endl; |
| cout << endl; |
| cout << indent_str << "w_comp_inv_p1 = " << setw(12) << w_comp_inv_p1 << " um" << endl; |
| cout << indent_str << "w_comp_inv_p2 = " << setw(12) << w_comp_inv_p2 << " um" << endl; |
| cout << indent_str << "w_comp_inv_p3 = " << setw(12) << w_comp_inv_p3 << " um" << endl; |
| cout << indent_str << "w_comp_inv_n1 = " << setw(12) << w_comp_inv_n1 << " um" << endl; |
| cout << indent_str << "w_comp_inv_n2 = " << setw(12) << w_comp_inv_n2 << " um" << endl; |
| cout << indent_str << "w_comp_inv_n3 = " << setw(12) << w_comp_inv_n3 << " um" << endl; |
| cout << indent_str << "w_eval_inv_p = " << setw(12) << w_eval_inv_p << " um" << endl; |
| cout << indent_str << "w_eval_inv_n = " << setw(12) << w_eval_inv_n << " um" << endl; |
| cout << indent_str << "w_comp_n = " << setw(12) << w_comp_n << " um" << endl; |
| cout << indent_str << "w_comp_p = " << setw(12) << w_comp_p << " um" << endl; |
| cout << endl; |
| cout << indent_str << "dram_cell_I_on = " << setw(12) << dram_cell_I_on << " A/um" << endl; |
| cout << indent_str << "dram_cell_Vdd = " << setw(12) << dram_cell_Vdd << " V" << endl; |
| cout << indent_str << "dram_cell_I_off_worst_case_len_temp = " << setw(12) << dram_cell_I_off_worst_case_len_temp << " A/um" << endl; |
| cout << indent_str << "dram_cell_C = " << setw(12) << dram_cell_C << " F" << endl; |
| cout << indent_str << "gm_sense_amp_latch = " << setw(12) << gm_sense_amp_latch << " F/s" << endl; |
| cout << endl; |
| cout << indent_str << "w_nmos_b_mux = " << setw(12) << w_nmos_b_mux << " um" << endl; |
| cout << indent_str << "w_nmos_sa_mux = " << setw(12) << w_nmos_sa_mux << " um" << endl; |
| cout << indent_str << "w_pmos_bl_precharge = " << setw(12) << w_pmos_bl_precharge << " um" << endl; |
| cout << indent_str << "w_pmos_bl_eq = " << setw(12) << w_pmos_bl_eq << " um" << endl; |
| cout << indent_str << "MIN_GAP_BET_P_AND_N_DIFFS = " << setw(12) << MIN_GAP_BET_P_AND_N_DIFFS << " um" << endl; |
| cout << indent_str << "HPOWERRAIL = " << setw(12) << HPOWERRAIL << " um" << endl; |
| cout << indent_str << "cell_h_def = " << setw(12) << cell_h_def << " um" << endl; |
| |
| cout << endl; |
| cout << indent_str << "SRAM cell transistor: " << endl; |
| sram_cell.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "DRAM access transistor: " << endl; |
| dram_acc.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "DRAM wordline transistor: " << endl; |
| dram_wl.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "peripheral global transistor: " << endl; |
| peri_global.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "wire local" << endl; |
| wire_local.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "wire inside mat" << endl; |
| wire_inside_mat.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "wire outside mat" << endl; |
| wire_outside_mat.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "SRAM" << endl; |
| sram.display(indent + 2); |
| |
| cout << endl; |
| cout << indent_str << "DRAM" << endl; |
| dram.display(indent + 2); |
| } |
| |
| |
| DynamicParameter::DynamicParameter(): |
| use_inp_params(0), cell(), is_valid(true) { |
| } |
| |
| |
| |
| DynamicParameter::DynamicParameter( |
| bool is_tag_, |
| int pure_ram_, |
| int pure_cam_, |
| double Nspd_, |
| unsigned int Ndwl_, |
| unsigned int Ndbl_, |
| unsigned int Ndcm_, |
| unsigned int Ndsam_lev_1_, |
| unsigned int Ndsam_lev_2_, |
| bool is_main_mem_): |
| is_tag(is_tag_), pure_ram(pure_ram_), pure_cam(pure_cam_), tagbits(0), |
| Nspd(Nspd_), Ndwl(Ndwl_), Ndbl(Ndbl_), Ndcm(Ndcm_), |
| Ndsam_lev_1(Ndsam_lev_1_), Ndsam_lev_2(Ndsam_lev_2_), |
| number_way_select_signals_mat(0), V_b_sense(0), use_inp_params(0), |
| is_main_mem(is_main_mem_), cell(), is_valid(false) { |
| ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type; |
| is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram)); |
| |
| unsigned int capacity_per_die = g_ip->cache_sz / NUMBER_STACKED_DIE_LAYERS; // capacity per stacked die layer |
| const TechnologyParameter::InterconnectType & wire_local = g_tp.wire_local; |
| fully_assoc = (g_ip->fully_assoc) ? true : false; |
| |
| // fully-assocative cache -- ref: CACTi 2.0 report |
| if (fully_assoc || pure_cam) { |
| if (Ndwl != 1 || //Ndwl is fixed to 1 for FA |
| Ndcm != 1 || //Ndcm is fixed to 1 for FA |
| Nspd < 1 || Nspd > 1 || //Nspd is fixed to 1 for FA |
| Ndsam_lev_1 != 1 || //Ndsam_lev_1 is fixed to one |
| Ndsam_lev_2 != 1 || //Ndsam_lev_2 is fixed to one |
| Ndbl < 2) { |
| return; |
| } |
| } |
| |
| if ((is_dram) && (!is_tag) && (Ndcm > 1)) { |
| return; // For a DRAM array, each bitline has its own sense-amp |
| } |
| |
| // If it's not an FA tag/data array, Ndwl should be at least two and Ndbl should be |
| // at least two because an array is assumed to have at least one mat. And a mat |
| // is formed out of two horizontal subarrays and two vertical subarrays |
| if (fully_assoc == false && (Ndwl < 1 || Ndbl < 1)) { |
| return; |
| } |
| |
| //***********compute row, col of an subarray |
| if (!(fully_assoc || pure_cam)) { |
| //Not fully_asso nor cam |
| // if data array, let tagbits = 0 |
| if (is_tag) { |
| if (g_ip->specific_tag) { |
| tagbits = g_ip->tag_w; |
| } else { |
| tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(capacity_per_die) + |
| _log2(g_ip->tag_assoc * 2 - 1) - _log2(g_ip->nbanks); |
| |
| } |
| tagbits = (((tagbits + 3) >> 2) << 2); |
| |
| num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks * |
| g_ip->block_sz * g_ip->tag_assoc * Ndbl * Nspd));// + EPSILON); |
| num_c_subarray = (int)ceil((tagbits * g_ip->tag_assoc * Nspd / Ndwl));// + EPSILON); |
| //burst_length = 1; |
| } else { |
| num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks * |
| g_ip->block_sz * g_ip->data_assoc * Ndbl * Nspd));// + EPSILON); |
| num_c_subarray = (int)ceil((8 * g_ip->block_sz * g_ip->data_assoc * Nspd / Ndwl));// + EPSILON); + EPSILON); |
| // burst_length = g_ip->block_sz * 8 / g_ip->out_w; |
| } |
| |
| if (num_r_subarray < MINSUBARRAYROWS) return; |
| if (num_r_subarray == 0) return; |
| if (num_r_subarray > MAXSUBARRAYROWS) return; |
| if (num_c_subarray < MINSUBARRAYCOLS) return; |
| if (num_c_subarray > MAXSUBARRAYCOLS) return; |
| |
| } |
| |
| else {//either fully-asso or cam |
| if (pure_cam) { |
| if (g_ip->specific_tag) { |
| tagbits = int(ceil(g_ip->tag_w / 8.0) * 8); |
| } else { |
| tagbits = int(ceil((ADDRESS_BITS + EXTRA_TAG_BITS) / 8.0) * 8); |
| // cout<<"Pure CAM needs tag width to be specified"<<endl; |
| // exit(0); |
| } |
| //tagbits = (((tagbits + 3) >> 2) << 2); |
| |
| //TODO: error check input of tagbits and blocksize |
| //TODO: for pure CAM, g_ip->block should be number of entries. |
| tag_num_r_subarray = (int)ceil(capacity_per_die / |
| (g_ip->nbanks * tagbits / 8.0 * Ndbl)); |
| //tag_num_c_subarray = (int)(tagbits + EPSILON); |
| tag_num_c_subarray = tagbits; |
| if (tag_num_r_subarray == 0) return; |
| if (tag_num_r_subarray > MAXSUBARRAYROWS) return; |
| if (tag_num_c_subarray < MINSUBARRAYCOLS) return; |
| if (tag_num_c_subarray > MAXSUBARRAYCOLS) return; |
| num_r_subarray = tag_num_r_subarray; |
| } else { //fully associative |
| if (g_ip->specific_tag) { |
| tagbits = g_ip->tag_w; |
| } else { |
| tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(g_ip->block_sz);//TODO: should be the page_offset=log2(page size), but this info is not avail with CACTI, for McPAT this is no problem. |
| } |
| tagbits = (((tagbits + 3) >> 2) << 2); |
| |
| tag_num_r_subarray = (int)(capacity_per_die / |
| (g_ip->nbanks * g_ip->block_sz * Ndbl)); |
| tag_num_c_subarray = (int)ceil((tagbits * Nspd / Ndwl));// + EPSILON); |
| if (tag_num_r_subarray == 0) return; |
| if (tag_num_r_subarray > MAXSUBARRAYROWS) return; |
| if (tag_num_c_subarray < MINSUBARRAYCOLS) return; |
| if (tag_num_c_subarray > MAXSUBARRAYCOLS) return; |
| |
| data_num_r_subarray = tag_num_r_subarray; |
| data_num_c_subarray = 8 * g_ip->block_sz; |
| if (data_num_r_subarray == 0) return; |
| if (data_num_r_subarray > MAXSUBARRAYROWS) return; |
| if (data_num_c_subarray < MINSUBARRAYCOLS) return; |
| if (data_num_c_subarray > MAXSUBARRAYCOLS) return; |
| num_r_subarray = tag_num_r_subarray; |
| } |
| } |
| |
| num_subarrays = Ndwl * Ndbl; |
| //****************end of computation of row, col of an subarray |
| |
| // calculate wire parameters |
| if (fully_assoc || pure_cam) { |
| cam_cell.h = g_tp.cam.b_h + 2 * wire_local.pitch * |
| (g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + g_ip->num_wr_ports) |
| + 2 * wire_local.pitch * (g_ip->num_search_ports - 1) + |
| wire_local.pitch * g_ip->num_se_rd_ports; |
| cam_cell.w = g_tp.cam.b_w + 2 * wire_local.pitch * |
| (g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + g_ip->num_wr_ports) |
| + 2 * wire_local.pitch * (g_ip->num_search_ports - 1) + |
| wire_local.pitch * g_ip->num_se_rd_ports; |
| |
| cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * |
| (g_ip->num_wr_ports + g_ip->num_rw_ports - 1 + g_ip->num_rd_ports) |
| + 2 * wire_local.pitch * (g_ip->num_search_ports - 1); |
| cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * |
| (g_ip->num_rw_ports - 1 + (g_ip->num_rd_ports - |
| g_ip->num_se_rd_ports) |
| + g_ip->num_wr_ports) + g_tp.wire_local.pitch * |
| g_ip->num_se_rd_ports + 2 * wire_local.pitch * |
| (g_ip->num_search_ports - 1); |
| } else { |
| if (is_tag) { |
| cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + |
| g_ip->num_wr_ports); |
| cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_wr_ports + |
| (g_ip->num_rd_ports - g_ip->num_se_rd_ports)) + |
| wire_local.pitch * g_ip->num_se_rd_ports; |
| } else { |
| if (is_dram) { |
| cell.h = g_tp.dram.b_h; |
| cell.w = g_tp.dram.b_w; |
| } else { |
| cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_wr_ports + |
| g_ip->num_rw_ports - 1 + g_ip->num_rd_ports); |
| cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + |
| (g_ip->num_rd_ports - g_ip->num_se_rd_ports) + |
| g_ip->num_wr_ports) + g_tp.wire_local.pitch * g_ip->num_se_rd_ports; |
| } |
| } |
| } |
| |
| double c_b_metal = cell.h * wire_local.C_per_um; |
| double C_bl; |
| |
| if (!(fully_assoc || pure_cam)) { |
| if (is_dram) { |
| deg_bl_muxing = 1; |
| if (ram_cell_tech_type == comm_dram) { |
| C_bl = num_r_subarray * c_b_metal; |
| V_b_sense = (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_C / |
| (g_tp.dram_cell_C + C_bl); |
| if (V_b_sense < VBITSENSEMIN) { |
| return; |
| } |
| V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value |
| dram_refresh_period = 64e-3; |
| } else { |
| double Cbitrow_drain_cap = drain_C_(g_tp.dram.cell_a_w, NCH, 1, 0, cell.w, true, true) / 2.0; |
| C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal); |
| V_b_sense = (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_C / |
| (g_tp.dram_cell_C + C_bl); |
| |
| if (V_b_sense < VBITSENSEMIN) { |
| return; //Sense amp input signal is smaller that minimum allowable sense amp input signal |
| } |
| V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value |
| //v_storage_worst = g_tp.dram_cell_Vdd / 2 - VBITSENSEMIN * (g_tp.dram_cell_C + C_bl) / g_tp.dram_cell_C; |
| //dram_refresh_period = 1.1 * g_tp.dram_cell_C * v_storage_worst / g_tp.dram_cell_I_off_worst_case_len_temp; |
| dram_refresh_period = 0.9 * g_tp.dram_cell_C * VDD_STORAGE_LOSS_FRACTION_WORST * g_tp.dram_cell_Vdd / g_tp.dram_cell_I_off_worst_case_len_temp; |
| } |
| } else { //SRAM |
| V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN; |
| deg_bl_muxing = Ndcm; |
| // "/ 2.0" below is due to the fact that two adjacent access transistors share drain |
| // contacts in a physical layout |
| double Cbitrow_drain_cap = drain_C_(g_tp.sram.cell_a_w, NCH, 1, 0, cell.w, false, true) / 2.0; |
| C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal); |
| dram_refresh_period = 0; |
| } |
| } else { |
| c_b_metal = cam_cell.h * wire_local.C_per_um;//IBM and SUN design, SRAM array uses dummy cells to fill the blank space due to mismatch on CAM-RAM |
| V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN; |
| deg_bl_muxing = 1;//FA fix as 1 |
| // "/ 2.0" below is due to the fact that two adjacent access transistors share drain |
| // contacts in a physical layout |
| double Cbitrow_drain_cap = drain_C_(g_tp.cam.cell_a_w, NCH, 1, 0, cam_cell.w, false, true) / 2.0;//TODO: comment out these two lines |
| C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal); |
| dram_refresh_period = 0; |
| } |
| |
| |
| // do/di: data in/out, for fully associative they are the data width for normal read and write |
| // so/si: search data in/out, for fully associative they are the data width for the search ops |
| // for CAM, si=di, but so = matching address. do = data out = di (for normal read/write) |
| // so/si needs broadcase while do/di do not |
| |
| if (fully_assoc || pure_cam) { |
| switch (Ndbl) { |
| case (0): |
| cout << " Invalid Ndbl \n" << endl; |
| exit(0); |
| break; |
| case (1): |
| num_mats_h_dir = 1;//one subarray per mat |
| num_mats_v_dir = 1; |
| break; |
| case (2): |
| num_mats_h_dir = 1;//two subarrays per mat |
| num_mats_v_dir = 1; |
| break; |
| default: |
| num_mats_h_dir = int(floor(sqrt(Ndbl / 4.0)));//4 subbarrys per mat |
| num_mats_v_dir = int(Ndbl / 4.0 / num_mats_h_dir); |
| } |
| num_mats = num_mats_h_dir * num_mats_v_dir; |
| |
| if (fully_assoc) { |
| num_so_b_mat = data_num_c_subarray; |
| num_do_b_mat = data_num_c_subarray + tagbits; |
| } else { |
| num_so_b_mat = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data |
| num_do_b_mat = tagbits; |
| } |
| } else { |
| num_mats_h_dir = MAX(Ndwl / 2, 1); |
| num_mats_v_dir = MAX(Ndbl / 2, 1); |
| num_mats = num_mats_h_dir * num_mats_v_dir; |
| num_do_b_mat = MAX((num_subarrays / num_mats) * num_c_subarray / |
| (deg_bl_muxing * Ndsam_lev_1 * Ndsam_lev_2), 1); |
| } |
| |
| if (!(fully_assoc || pure_cam) && (num_do_b_mat < |
| (num_subarrays / num_mats))) { |
| return; |
| } |
| |
| |
| int deg_sa_mux_l1_non_assoc; |
| //TODO:the i/o for subbank is not necessary and should be removed. |
| if (!(fully_assoc || pure_cam)) { |
| if (!is_tag) { |
| if (is_main_mem == true) { |
| num_do_b_subbank = g_ip->int_prefetch_w * g_ip->out_w; |
| deg_sa_mux_l1_non_assoc = Ndsam_lev_1; |
| } else { |
| if (g_ip->fast_access == true) { |
| num_do_b_subbank = g_ip->out_w * g_ip->data_assoc; |
| deg_sa_mux_l1_non_assoc = Ndsam_lev_1; |
| } else { |
| |
| num_do_b_subbank = g_ip->out_w; |
| deg_sa_mux_l1_non_assoc = Ndsam_lev_1 / g_ip->data_assoc; |
| if (deg_sa_mux_l1_non_assoc < 1) { |
| return; |
| } |
| |
| } |
| } |
| } else { |
| num_do_b_subbank = tagbits * g_ip->tag_assoc; |
| if (num_do_b_mat < tagbits) { |
| return; |
| } |
| deg_sa_mux_l1_non_assoc = Ndsam_lev_1; |
| //num_do_b_mat = g_ip->tag_assoc / num_mats_h_dir; |
| } |
| } else { |
| if (fully_assoc) { |
| num_so_b_subbank = 8 * g_ip->block_sz;//TODO:internal perfetch should be considered also for fa |
| num_do_b_subbank = num_so_b_subbank + tag_num_c_subarray; |
| } else { |
| num_so_b_subbank = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data |
| num_do_b_subbank = tag_num_c_subarray; |
| } |
| |
| deg_sa_mux_l1_non_assoc = 1; |
| } |
| |
| deg_senseamp_muxing_non_associativity = deg_sa_mux_l1_non_assoc; |
| |
| if (fully_assoc || pure_cam) { |
| num_act_mats_hor_dir = 1; |
| num_act_mats_hor_dir_sl = num_mats_h_dir;//TODO: this is unnecessary, since search op, num_mats is used |
| } else { |
| num_act_mats_hor_dir = num_do_b_subbank / num_do_b_mat; |
| if (num_act_mats_hor_dir == 0) { |
| return; |
| } |
| } |
| |
| //compute num_do_mat for tag |
| if (is_tag) { |
| if (!(fully_assoc || pure_cam)) { |
| num_do_b_mat = g_ip->tag_assoc / num_act_mats_hor_dir; |
| num_do_b_subbank = num_act_mats_hor_dir * num_do_b_mat; |
| } |
| } |
| |
| if ((g_ip->is_cache == false && is_main_mem == true) || |
| (PAGE_MODE == 1 && is_dram)) { |
| if (num_act_mats_hor_dir * num_do_b_mat * Ndsam_lev_1 * Ndsam_lev_2 != |
| (int)g_ip->page_sz_bits) { |
| return; |
| } |
| } |
| |
| // if (is_tag == false && g_ip->is_cache == true && !fully_assoc && !pure_cam && //TODO: TODO burst transfer should also apply to RAM arrays |
| if (is_tag == false && g_ip->is_main_mem == true && |
| num_act_mats_hor_dir*num_do_b_mat*Ndsam_lev_1*Ndsam_lev_2 < |
| ((int) g_ip->out_w * (int) g_ip->burst_len * (int) g_ip->data_assoc)) { |
| return; |
| } |
| |
| if (num_act_mats_hor_dir > num_mats_h_dir) { |
| return; |
| } |
| |
| |
| //compute di for mat subbank and bank |
| if (!(fully_assoc || pure_cam)) { |
| if (!is_tag) { |
| if (g_ip->fast_access == true) { |
| num_di_b_mat = num_do_b_mat / g_ip->data_assoc; |
| } else { |
| num_di_b_mat = num_do_b_mat; |
| } |
| } else { |
| num_di_b_mat = tagbits; |
| } |
| } else { |
| if (fully_assoc) { |
| num_di_b_mat = num_do_b_mat; |
| //*num_subarrays/num_mats; bits per mat of CAM/FA is as same as cache, |
| //but inside the mat wire tracks need to be reserved for search data bus |
| num_si_b_mat = tagbits; |
| } else { |
| num_di_b_mat = tagbits; |
| num_si_b_mat = tagbits;//*num_subarrays/num_mats; |
| } |
| |
| } |
| |
| num_di_b_subbank = num_di_b_mat * num_act_mats_hor_dir;//normal cache or normal r/w for FA |
| num_si_b_subbank = num_si_b_mat; //* num_act_mats_hor_dir_sl; inside the data is broadcast |
| |
| int num_addr_b_row_dec = _log2(num_r_subarray); |
| if ((fully_assoc || pure_cam)) |
| num_addr_b_row_dec += _log2(num_subarrays / num_mats); |
| int number_subbanks = num_mats / num_act_mats_hor_dir; |
| number_subbanks_decode = _log2(number_subbanks);//TODO: add log2(num_subarray_per_bank) to FA/CAM |
| |
| num_rw_ports = g_ip->num_rw_ports; |
| num_rd_ports = g_ip->num_rd_ports; |
| num_wr_ports = g_ip->num_wr_ports; |
| num_se_rd_ports = g_ip->num_se_rd_ports; |
| num_search_ports = g_ip->num_search_ports; |
| |
| if (is_dram && is_main_mem) { |
| number_addr_bits_mat = MAX((unsigned int) num_addr_b_row_dec, |
| _log2(deg_bl_muxing) + _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2)); |
| } else { |
| number_addr_bits_mat = num_addr_b_row_dec + _log2(deg_bl_muxing) + |
| _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2); |
| } |
| |
| if (!(fully_assoc || pure_cam)) { |
| if (is_tag) { |
| num_di_b_bank_per_port = tagbits; |
| num_do_b_bank_per_port = g_ip->data_assoc; |
| } else { |
| num_di_b_bank_per_port = g_ip->out_w + g_ip->data_assoc; |
| num_do_b_bank_per_port = g_ip->out_w; |
| } |
| } else { |
| if (fully_assoc) { |
| num_di_b_bank_per_port = g_ip->out_w + tagbits;//TODO: out_w or block_sz? |
| num_si_b_bank_per_port = tagbits; |
| num_do_b_bank_per_port = g_ip->out_w + tagbits; |
| num_so_b_bank_per_port = g_ip->out_w; |
| } else { |
| num_di_b_bank_per_port = tagbits; |
| num_si_b_bank_per_port = tagbits; |
| num_do_b_bank_per_port = tagbits; |
| num_so_b_bank_per_port = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays))); |
| } |
| } |
| |
| if ((!is_tag) && (g_ip->data_assoc > 1) && (!g_ip->fast_access)) { |
| number_way_select_signals_mat = g_ip->data_assoc; |
| } |
| |
| // add ECC adjustment to all data signals that traverse on H-trees. |
| if (g_ip->add_ecc_b_ == true) { |
| num_do_b_mat += (int) (ceil(num_do_b_mat / num_bits_per_ecc_b_)); |
| num_di_b_mat += (int) (ceil(num_di_b_mat / num_bits_per_ecc_b_)); |
| num_di_b_subbank += (int) (ceil(num_di_b_subbank / num_bits_per_ecc_b_)); |
| num_do_b_subbank += (int) (ceil(num_do_b_subbank / num_bits_per_ecc_b_)); |
| num_di_b_bank_per_port += (int) (ceil(num_di_b_bank_per_port / num_bits_per_ecc_b_)); |
| num_do_b_bank_per_port += (int) (ceil(num_do_b_bank_per_port / num_bits_per_ecc_b_)); |
| |
| num_so_b_mat += (int) (ceil(num_so_b_mat / num_bits_per_ecc_b_)); |
| num_si_b_mat += (int) (ceil(num_si_b_mat / num_bits_per_ecc_b_)); |
| num_si_b_subbank += (int) (ceil(num_si_b_subbank / num_bits_per_ecc_b_)); |
| num_so_b_subbank += (int) (ceil(num_so_b_subbank / num_bits_per_ecc_b_)); |
| num_si_b_bank_per_port += (int) (ceil(num_si_b_bank_per_port / num_bits_per_ecc_b_)); |
| num_so_b_bank_per_port += (int) (ceil(num_so_b_bank_per_port / num_bits_per_ecc_b_)); |
| } |
| |
| is_valid = true; |
| } |
| |