blob: 617d17e35dcdd8534c1ccdc4fdbc38ffc0195a2a [file] [log] [blame]
/*
* Copyright (c) 2016 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathanael Premillieu
* Rekai Gonzalez
*/
#ifndef __CPU__REG_CLASS_HH__
#define __CPU__REG_CLASS_HH__
#include <cassert>
#include <cstddef>
#include "arch/generic/types.hh"
#include "arch/registers.hh"
#include "config/the_isa.hh"
/** Enumerate the classes of registers. */
enum RegClass {
IntRegClass, ///< Integer register
FloatRegClass, ///< Floating-point register
/** Vector Register. */
VecRegClass,
/** Vector Register Native Elem lane. */
VecElemClass,
CCRegClass, ///< Condition-code register
MiscRegClass ///< Control (misc) register
};
/** Number of register classes.
* This value is not part of the enum, because putting it there makes the
* compiler complain about unhandled cases in some switch statements.
*/
const int NumRegClasses = MiscRegClass + 1;
/** Register ID: describe an architectural register with its class and index.
* This structure is used instead of just the register index to disambiguate
* between different classes of registers. For example, a integer register with
* index 3 is represented by Regid(IntRegClass, 3).
*/
class RegId {
private:
static const char* regClassStrings[];
RegClass regClass;
RegIndex regIdx;
ElemIndex elemIdx;
static constexpr size_t Scale = TheISA::NumVecElemPerVecReg;
friend struct std::hash<RegId>;
public:
RegId() {};
RegId(RegClass reg_class, RegIndex reg_idx)
: regClass(reg_class), regIdx(reg_idx), elemIdx(-1)
{
panic_if(regClass == VecElemClass,
"Creating vector physical index w/o element index");
}
explicit RegId(RegClass reg_class, RegIndex reg_idx, ElemIndex elem_idx)
: regClass(reg_class), regIdx(reg_idx), elemIdx(elem_idx)
{
panic_if(regClass != VecElemClass,
"Creating non-vector physical index w/ element index");
}
bool operator==(const RegId& that) const {
return regClass == that.classValue() && regIdx == that.index()
&& elemIdx == that.elemIndex();
}
bool operator!=(const RegId& that) const {
return !(*this==that);
}
/** Order operator.
* The order is required to implement maps with key type RegId
*/
bool operator<(const RegId& that) const {
return regClass < that.classValue() ||
(regClass == that.classValue() && (
regIdx < that.index() ||
(regIdx == that.index() && elemIdx < that.elemIndex())));
}
/**
* Return true if this register can be renamed
*/
bool isRenameable() const
{
return regClass != MiscRegClass;
}
/**
* Check if this is the zero register.
* Returns true if this register is a zero register (needs to have a
* constant zero value throughout the execution).
*/
inline bool isZeroReg() const
{
return ((regClass == IntRegClass && regIdx == TheISA::ZeroReg) ||
(THE_ISA == ALPHA_ISA && regClass == FloatRegClass &&
regIdx == TheISA::ZeroReg));
}
/** @return true if it is an integer physical register. */
bool isIntReg() const { return regClass == IntRegClass; }
/** @return true if it is a floating-point physical register. */
bool isFloatReg() const { return regClass == FloatRegClass; }
/** @Return true if it is a condition-code physical register. */
bool isVecReg() const { return regClass == VecRegClass; }
/** @Return true if it is a condition-code physical register. */
bool isVecElem() const { return regClass == VecElemClass; }
/** @Return true if it is a condition-code physical register. */
bool isCCReg() const { return regClass == CCRegClass; }
/** @Return true if it is a condition-code physical register. */
bool isMiscReg() const { return regClass == MiscRegClass; }
/**
* Return true if this register can be renamed
*/
bool isRenameable()
{
return regClass != MiscRegClass;
}
/** Index accessors */
/** @{ */
const RegIndex& index() const { return regIdx; }
RegIndex& index() { return regIdx; }
/** Index flattening.
* Required to be able to use a vector for the register mapping.
*/
inline RegIndex flatIndex() const
{
switch (regClass) {
case IntRegClass:
case FloatRegClass:
case VecRegClass:
case CCRegClass:
case MiscRegClass:
return regIdx;
case VecElemClass:
return Scale*regIdx + elemIdx;
}
panic("Trying to flatten a register without class!");
return -1;
}
/** @} */
/** Elem accessor */
const RegIndex& elemIndex() const { return elemIdx; }
/** Class accessor */
const RegClass& classValue() const { return regClass; }
/** Return a const char* with the register class name. */
const char* className() const { return regClassStrings[regClass]; }
friend std::ostream&
operator<<(std::ostream& os, const RegId& rid) {
return os << rid.className() << "{" << rid.index() << "}";
}
};
namespace std
{
template<>
struct hash<RegId>
{
size_t operator()(const RegId& reg_id) const
{
// Extract unique integral values for the effective fields of a RegId.
const size_t flat_index = static_cast<size_t>(reg_id.flatIndex());
const size_t class_num = static_cast<size_t>(reg_id.regClass);
const size_t shifted_class_num = class_num << (sizeof(RegIndex) << 3);
// Concatenate the class_num to the end of the flat_index, in order to
// maximize information retained.
const size_t concatenated_hash = flat_index | shifted_class_num;
// If RegIndex is larger than size_t, then class_num will not be
// considered by this hash function, so we may wish to perform a
// different operation to include that information in the hash.
static_assert(sizeof(RegIndex) < sizeof(size_t),
"sizeof(RegIndex) should be less than sizeof(size_t)");
return concatenated_hash;
}
};
}
#endif // __CPU__REG_CLASS_HH__