| /* |
| * Copyright (c) 2002-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Steve Reinhardt |
| * Nathan Binkert |
| */ |
| |
| #include <iostream> |
| #include <string> |
| #include <sstream> |
| |
| #include "arch/tlb.hh" |
| #include "base/cprintf.hh" |
| #include "base/loader/symtab.hh" |
| #include "base/misc.hh" |
| #include "base/output.hh" |
| #include "base/trace.hh" |
| #include "cpu/base.hh" |
| #include "cpu/cpuevent.hh" |
| #include "cpu/thread_context.hh" |
| #include "cpu/profile.hh" |
| #include "params/BaseCPU.hh" |
| #include "sim/sim_exit.hh" |
| #include "sim/process.hh" |
| #include "sim/sim_events.hh" |
| #include "sim/system.hh" |
| |
| // Hack |
| #include "sim/stat_control.hh" |
| |
| using namespace std; |
| |
| vector<BaseCPU *> BaseCPU::cpuList; |
| |
| // This variable reflects the max number of threads in any CPU. Be |
| // careful to only use it once all the CPUs that you care about have |
| // been initialized |
| int maxThreadsPerCPU = 1; |
| |
| CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival) |
| : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0), |
| cpu(_cpu), _repeatEvent(true) |
| { |
| if (_interval) |
| cpu->schedule(this, curTick() + _interval); |
| } |
| |
| void |
| CPUProgressEvent::process() |
| { |
| Counter temp = cpu->totalInstructions(); |
| #ifndef NDEBUG |
| double ipc = double(temp - lastNumInst) / (_interval / cpu->ticks(1)); |
| |
| DPRINTFN("%s progress event, total committed:%i, progress insts committed: " |
| "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst, |
| ipc); |
| ipc = 0.0; |
| #else |
| cprintf("%lli: %s progress event, total committed:%i, progress insts " |
| "committed: %lli\n", curTick(), cpu->name(), temp, |
| temp - lastNumInst); |
| #endif |
| lastNumInst = temp; |
| |
| if (_repeatEvent) |
| cpu->schedule(this, curTick() + _interval); |
| } |
| |
| const char * |
| CPUProgressEvent::description() const |
| { |
| return "CPU Progress"; |
| } |
| |
| #if FULL_SYSTEM |
| BaseCPU::BaseCPU(Params *p) |
| : MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id), |
| interrupts(p->interrupts), |
| numThreads(p->numThreads), system(p->system), |
| phase(p->phase) |
| #else |
| BaseCPU::BaseCPU(Params *p) |
| : MemObject(p), clock(p->clock), _cpuId(p->cpu_id), |
| numThreads(p->numThreads), system(p->system), |
| phase(p->phase) |
| #endif |
| { |
| // currentTick = curTick(); |
| |
| // if Python did not provide a valid ID, do it here |
| if (_cpuId == -1 ) { |
| _cpuId = cpuList.size(); |
| } |
| |
| // add self to global list of CPUs |
| cpuList.push_back(this); |
| |
| DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId); |
| |
| if (numThreads > maxThreadsPerCPU) |
| maxThreadsPerCPU = numThreads; |
| |
| // allocate per-thread instruction-based event queues |
| comInstEventQueue = new EventQueue *[numThreads]; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) |
| comInstEventQueue[tid] = |
| new EventQueue("instruction-based event queue"); |
| |
| // |
| // set up instruction-count-based termination events, if any |
| // |
| if (p->max_insts_any_thread != 0) { |
| const char *cause = "a thread reached the max instruction count"; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) { |
| Event *event = new SimLoopExitEvent(cause, 0); |
| comInstEventQueue[tid]->schedule(event, p->max_insts_any_thread); |
| } |
| } |
| |
| if (p->max_insts_all_threads != 0) { |
| const char *cause = "all threads reached the max instruction count"; |
| |
| // allocate & initialize shared downcounter: each event will |
| // decrement this when triggered; simulation will terminate |
| // when counter reaches 0 |
| int *counter = new int; |
| *counter = numThreads; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) { |
| Event *event = new CountedExitEvent(cause, *counter); |
| comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads); |
| } |
| } |
| |
| // allocate per-thread load-based event queues |
| comLoadEventQueue = new EventQueue *[numThreads]; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) |
| comLoadEventQueue[tid] = new EventQueue("load-based event queue"); |
| |
| // |
| // set up instruction-count-based termination events, if any |
| // |
| if (p->max_loads_any_thread != 0) { |
| const char *cause = "a thread reached the max load count"; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) { |
| Event *event = new SimLoopExitEvent(cause, 0); |
| comLoadEventQueue[tid]->schedule(event, p->max_loads_any_thread); |
| } |
| } |
| |
| if (p->max_loads_all_threads != 0) { |
| const char *cause = "all threads reached the max load count"; |
| // allocate & initialize shared downcounter: each event will |
| // decrement this when triggered; simulation will terminate |
| // when counter reaches 0 |
| int *counter = new int; |
| *counter = numThreads; |
| for (ThreadID tid = 0; tid < numThreads; ++tid) { |
| Event *event = new CountedExitEvent(cause, *counter); |
| comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads); |
| } |
| } |
| |
| functionTracingEnabled = false; |
| if (p->function_trace) { |
| functionTraceStream = simout.find(csprintf("ftrace.%s", name())); |
| currentFunctionStart = currentFunctionEnd = 0; |
| functionEntryTick = p->function_trace_start; |
| |
| if (p->function_trace_start == 0) { |
| functionTracingEnabled = true; |
| } else { |
| typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap; |
| Event *event = new wrap(this, true); |
| schedule(event, p->function_trace_start); |
| } |
| } |
| #if FULL_SYSTEM |
| interrupts->setCPU(this); |
| |
| profileEvent = NULL; |
| if (params()->profile) |
| profileEvent = new ProfileEvent(this, params()->profile); |
| #endif |
| tracer = params()->tracer; |
| } |
| |
| void |
| BaseCPU::enableFunctionTrace() |
| { |
| functionTracingEnabled = true; |
| } |
| |
| BaseCPU::~BaseCPU() |
| { |
| } |
| |
| void |
| BaseCPU::init() |
| { |
| if (!params()->defer_registration) |
| registerThreadContexts(); |
| } |
| |
| void |
| BaseCPU::startup() |
| { |
| #if FULL_SYSTEM |
| if (!params()->defer_registration && profileEvent) |
| schedule(profileEvent, curTick()); |
| #endif |
| |
| if (params()->progress_interval) { |
| Tick num_ticks = ticks(params()->progress_interval); |
| |
| Event *event; |
| event = new CPUProgressEvent(this, num_ticks); |
| } |
| } |
| |
| |
| void |
| BaseCPU::regStats() |
| { |
| using namespace Stats; |
| |
| numCycles |
| .name(name() + ".numCycles") |
| .desc("number of cpu cycles simulated") |
| ; |
| |
| int size = threadContexts.size(); |
| if (size > 1) { |
| for (int i = 0; i < size; ++i) { |
| stringstream namestr; |
| ccprintf(namestr, "%s.ctx%d", name(), i); |
| threadContexts[i]->regStats(namestr.str()); |
| } |
| } else if (size == 1) |
| threadContexts[0]->regStats(name()); |
| |
| #if FULL_SYSTEM |
| #endif |
| } |
| |
| Tick |
| BaseCPU::nextCycle() |
| { |
| Tick next_tick = curTick() - phase + clock - 1; |
| next_tick -= (next_tick % clock); |
| next_tick += phase; |
| return next_tick; |
| } |
| |
| Tick |
| BaseCPU::nextCycle(Tick begin_tick) |
| { |
| Tick next_tick = begin_tick; |
| if (next_tick % clock != 0) |
| next_tick = next_tick - (next_tick % clock) + clock; |
| next_tick += phase; |
| |
| assert(next_tick >= curTick()); |
| return next_tick; |
| } |
| |
| void |
| BaseCPU::registerThreadContexts() |
| { |
| ThreadID size = threadContexts.size(); |
| for (ThreadID tid = 0; tid < size; ++tid) { |
| ThreadContext *tc = threadContexts[tid]; |
| |
| /** This is so that contextId and cpuId match where there is a |
| * 1cpu:1context relationship. Otherwise, the order of registration |
| * could affect the assignment and cpu 1 could have context id 3, for |
| * example. We may even want to do something like this for SMT so that |
| * cpu 0 has the lowest thread contexts and cpu N has the highest, but |
| * I'll just do this for now |
| */ |
| if (numThreads == 1) |
| tc->setContextId(system->registerThreadContext(tc, _cpuId)); |
| else |
| tc->setContextId(system->registerThreadContext(tc)); |
| #if !FULL_SYSTEM |
| tc->getProcessPtr()->assignThreadContext(tc->contextId()); |
| #endif |
| } |
| } |
| |
| |
| int |
| BaseCPU::findContext(ThreadContext *tc) |
| { |
| ThreadID size = threadContexts.size(); |
| for (ThreadID tid = 0; tid < size; ++tid) { |
| if (tc == threadContexts[tid]) |
| return tid; |
| } |
| return 0; |
| } |
| |
| void |
| BaseCPU::switchOut() |
| { |
| // panic("This CPU doesn't support sampling!"); |
| #if FULL_SYSTEM |
| if (profileEvent && profileEvent->scheduled()) |
| deschedule(profileEvent); |
| #endif |
| } |
| |
| void |
| BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc) |
| { |
| assert(threadContexts.size() == oldCPU->threadContexts.size()); |
| |
| _cpuId = oldCPU->cpuId(); |
| |
| ThreadID size = threadContexts.size(); |
| for (ThreadID i = 0; i < size; ++i) { |
| ThreadContext *newTC = threadContexts[i]; |
| ThreadContext *oldTC = oldCPU->threadContexts[i]; |
| |
| newTC->takeOverFrom(oldTC); |
| |
| CpuEvent::replaceThreadContext(oldTC, newTC); |
| |
| assert(newTC->contextId() == oldTC->contextId()); |
| assert(newTC->threadId() == oldTC->threadId()); |
| system->replaceThreadContext(newTC, newTC->contextId()); |
| |
| /* This code no longer works since the zero register (e.g., |
| * r31 on Alpha) doesn't necessarily contain zero at this |
| * point. |
| if (DTRACE(Context)) |
| ThreadContext::compare(oldTC, newTC); |
| */ |
| |
| Port *old_itb_port, *old_dtb_port, *new_itb_port, *new_dtb_port; |
| old_itb_port = oldTC->getITBPtr()->getPort(); |
| old_dtb_port = oldTC->getDTBPtr()->getPort(); |
| new_itb_port = newTC->getITBPtr()->getPort(); |
| new_dtb_port = newTC->getDTBPtr()->getPort(); |
| |
| // Move over any table walker ports if they exist |
| if (new_itb_port && !new_itb_port->isConnected()) { |
| assert(old_itb_port); |
| Port *peer = old_itb_port->getPeer();; |
| new_itb_port->setPeer(peer); |
| peer->setPeer(new_itb_port); |
| } |
| if (new_dtb_port && !new_dtb_port->isConnected()) { |
| assert(old_dtb_port); |
| Port *peer = old_dtb_port->getPeer();; |
| new_dtb_port->setPeer(peer); |
| peer->setPeer(new_dtb_port); |
| } |
| } |
| |
| #if FULL_SYSTEM |
| interrupts = oldCPU->interrupts; |
| interrupts->setCPU(this); |
| |
| for (ThreadID i = 0; i < size; ++i) |
| threadContexts[i]->profileClear(); |
| |
| if (profileEvent) |
| schedule(profileEvent, curTick()); |
| #endif |
| |
| // Connect new CPU to old CPU's memory only if new CPU isn't |
| // connected to anything. Also connect old CPU's memory to new |
| // CPU. |
| if (!ic->isConnected()) { |
| Port *peer = oldCPU->getPort("icache_port")->getPeer(); |
| ic->setPeer(peer); |
| peer->setPeer(ic); |
| } |
| |
| if (!dc->isConnected()) { |
| Port *peer = oldCPU->getPort("dcache_port")->getPeer(); |
| dc->setPeer(peer); |
| peer->setPeer(dc); |
| } |
| } |
| |
| |
| #if FULL_SYSTEM |
| BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval) |
| : cpu(_cpu), interval(_interval) |
| { } |
| |
| void |
| BaseCPU::ProfileEvent::process() |
| { |
| ThreadID size = cpu->threadContexts.size(); |
| for (ThreadID i = 0; i < size; ++i) { |
| ThreadContext *tc = cpu->threadContexts[i]; |
| tc->profileSample(); |
| } |
| |
| cpu->schedule(this, curTick() + interval); |
| } |
| |
| void |
| BaseCPU::serialize(std::ostream &os) |
| { |
| SERIALIZE_SCALAR(instCnt); |
| interrupts->serialize(os); |
| } |
| |
| void |
| BaseCPU::unserialize(Checkpoint *cp, const std::string §ion) |
| { |
| UNSERIALIZE_SCALAR(instCnt); |
| interrupts->unserialize(cp, section); |
| } |
| |
| #endif // FULL_SYSTEM |
| |
| void |
| BaseCPU::traceFunctionsInternal(Addr pc) |
| { |
| if (!debugSymbolTable) |
| return; |
| |
| // if pc enters different function, print new function symbol and |
| // update saved range. Otherwise do nothing. |
| if (pc < currentFunctionStart || pc >= currentFunctionEnd) { |
| string sym_str; |
| bool found = debugSymbolTable->findNearestSymbol(pc, sym_str, |
| currentFunctionStart, |
| currentFunctionEnd); |
| |
| if (!found) { |
| // no symbol found: use addr as label |
| sym_str = csprintf("0x%x", pc); |
| currentFunctionStart = pc; |
| currentFunctionEnd = pc + 1; |
| } |
| |
| ccprintf(*functionTraceStream, " (%d)\n%d: %s", |
| curTick() - functionEntryTick, curTick(), sym_str); |
| functionEntryTick = curTick(); |
| } |
| } |