blob: 6216598dcd0ffc26642df1d21973caf5a7551698 [file] [log] [blame]
/*
* Copyright (c) 2010-2013,2016-2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2007-2008 The Florida State University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Stephen Hines
*/
#ifndef __ARCH_ARM_INSTS_STATICINST_HH__
#define __ARCH_ARM_INSTS_STATICINST_HH__
#include <memory>
#include "arch/arm/faults.hh"
#include "arch/arm/utility.hh"
#include "arch/arm/system.hh"
#include "base/trace.hh"
#include "cpu/exec_context.hh"
#include "cpu/static_inst.hh"
#include "sim/byteswap.hh"
#include "sim/full_system.hh"
namespace ArmISA
{
class ArmStaticInst : public StaticInst
{
protected:
bool aarch64;
uint8_t intWidth;
int32_t shift_rm_imm(uint32_t base, uint32_t shamt,
uint32_t type, uint32_t cfval) const;
int32_t shift_rm_rs(uint32_t base, uint32_t shamt,
uint32_t type, uint32_t cfval) const;
bool shift_carry_imm(uint32_t base, uint32_t shamt,
uint32_t type, uint32_t cfval) const;
bool shift_carry_rs(uint32_t base, uint32_t shamt,
uint32_t type, uint32_t cfval) const;
int64_t shiftReg64(uint64_t base, uint64_t shiftAmt,
ArmShiftType type, uint8_t width) const;
int64_t extendReg64(uint64_t base, ArmExtendType type,
uint64_t shiftAmt, uint8_t width) const;
template<int width>
static inline bool
saturateOp(int32_t &res, int64_t op1, int64_t op2, bool sub=false)
{
int64_t midRes = sub ? (op1 - op2) : (op1 + op2);
if (bits(midRes, width) != bits(midRes, width - 1)) {
if (midRes > 0)
res = (LL(1) << (width - 1)) - 1;
else
res = -(LL(1) << (width - 1));
return true;
} else {
res = midRes;
return false;
}
}
static inline bool
satInt(int32_t &res, int64_t op, int width)
{
width--;
if (op >= (LL(1) << width)) {
res = (LL(1) << width) - 1;
return true;
} else if (op < -(LL(1) << width)) {
res = -(LL(1) << width);
return true;
} else {
res = op;
return false;
}
}
template<int width>
static inline bool
uSaturateOp(uint32_t &res, int64_t op1, int64_t op2, bool sub=false)
{
int64_t midRes = sub ? (op1 - op2) : (op1 + op2);
if (midRes >= (LL(1) << width)) {
res = (LL(1) << width) - 1;
return true;
} else if (midRes < 0) {
res = 0;
return true;
} else {
res = midRes;
return false;
}
}
static inline bool
uSatInt(int32_t &res, int64_t op, int width)
{
if (op >= (LL(1) << width)) {
res = (LL(1) << width) - 1;
return true;
} else if (op < 0) {
res = 0;
return true;
} else {
res = op;
return false;
}
}
// Constructor
ArmStaticInst(const char *mnem, ExtMachInst _machInst,
OpClass __opClass)
: StaticInst(mnem, _machInst, __opClass)
{
aarch64 = machInst.aarch64;
if (bits(machInst, 28, 24) == 0x10)
intWidth = 64; // Force 64-bit width for ADR/ADRP
else
intWidth = (aarch64 && bits(machInst, 31)) ? 64 : 32;
}
/// Print a register name for disassembly given the unique
/// dependence tag number (FP or int).
void printIntReg(std::ostream &os, RegIndex reg_idx) const;
void printFloatReg(std::ostream &os, RegIndex reg_idx) const;
void printVecReg(std::ostream &os, RegIndex reg_idx) const;
void printCCReg(std::ostream &os, RegIndex reg_idx) const;
void printMiscReg(std::ostream &os, RegIndex reg_idx) const;
void printMnemonic(std::ostream &os,
const std::string &suffix = "",
bool withPred = true,
bool withCond64 = false,
ConditionCode cond64 = COND_UC) const;
void printTarget(std::ostream &os, Addr target,
const SymbolTable *symtab) const;
void printCondition(std::ostream &os, unsigned code,
bool noImplicit=false) const;
void printMemSymbol(std::ostream &os, const SymbolTable *symtab,
const std::string &prefix, const Addr addr,
const std::string &suffix) const;
void printShiftOperand(std::ostream &os, IntRegIndex rm,
bool immShift, uint32_t shiftAmt,
IntRegIndex rs, ArmShiftType type) const;
void printExtendOperand(bool firstOperand, std::ostream &os,
IntRegIndex rm, ArmExtendType type,
int64_t shiftAmt) const;
void printDataInst(std::ostream &os, bool withImm) const;
void printDataInst(std::ostream &os, bool withImm, bool immShift, bool s,
IntRegIndex rd, IntRegIndex rn, IntRegIndex rm,
IntRegIndex rs, uint32_t shiftAmt, ArmShiftType type,
uint64_t imm) const;
void
advancePC(PCState &pcState) const override
{
pcState.advance();
}
std::string generateDisassembly(
Addr pc, const SymbolTable *symtab) const override;
static inline uint32_t
cpsrWriteByInstr(CPSR cpsr, uint32_t val, SCR scr, NSACR nsacr,
uint8_t byteMask, bool affectState, bool nmfi, ThreadContext *tc)
{
bool privileged = (cpsr.mode != MODE_USER);
bool haveVirt = ArmSystem::haveVirtualization(tc);
bool haveSecurity = ArmSystem::haveSecurity(tc);
bool isSecure = inSecureState(scr, cpsr) || !haveSecurity;
uint32_t bitMask = 0;
if (bits(byteMask, 3)) {
unsigned lowIdx = affectState ? 24 : 27;
bitMask = bitMask | mask(31, lowIdx);
}
if (bits(byteMask, 2)) {
bitMask = bitMask | mask(19, 16);
}
if (bits(byteMask, 1)) {
unsigned highIdx = affectState ? 15 : 9;
unsigned lowIdx = (privileged && (isSecure || scr.aw || haveVirt))
? 8 : 9;
bitMask = bitMask | mask(highIdx, lowIdx);
}
if (bits(byteMask, 0)) {
if (privileged) {
bitMask |= 1 << 7;
if ( (!nmfi || !((val >> 6) & 0x1)) &&
(isSecure || scr.fw || haveVirt) ) {
bitMask |= 1 << 6;
}
// Now check the new mode is allowed
OperatingMode newMode = (OperatingMode) (val & mask(5));
OperatingMode oldMode = (OperatingMode)(uint32_t)cpsr.mode;
if (!badMode(tc, newMode)) {
bool validModeChange = true;
// Check for attempts to enter modes only permitted in
// Secure state from Non-secure state. These are Monitor
// mode ('10110'), and FIQ mode ('10001') if the Security
// Extensions have reserved it.
if (!isSecure && newMode == MODE_MON)
validModeChange = false;
if (!isSecure && newMode == MODE_FIQ && nsacr.rfr == '1')
validModeChange = false;
// There is no Hyp mode ('11010') in Secure state, so that
// is UNPREDICTABLE
if (scr.ns == '0' && newMode == MODE_HYP)
validModeChange = false;
// Cannot move into Hyp mode directly from a Non-secure
// PL1 mode
if (!isSecure && oldMode != MODE_HYP && newMode == MODE_HYP)
validModeChange = false;
// Cannot move out of Hyp mode with this function except
// on an exception return
if (oldMode == MODE_HYP && newMode != MODE_HYP && !affectState)
validModeChange = false;
// Must not change to 64 bit when running in 32 bit mode
if (!opModeIs64(oldMode) && opModeIs64(newMode))
validModeChange = false;
// If we passed all of the above then set the bit mask to
// copy the mode accross
if (validModeChange) {
bitMask = bitMask | mask(5);
} else {
warn_once("Illegal change to CPSR mode attempted\n");
}
} else {
warn_once("Ignoring write of bad mode to CPSR.\n");
}
}
if (affectState)
bitMask = bitMask | (1 << 5);
}
return ((uint32_t)cpsr & ~bitMask) | (val & bitMask);
}
static inline uint32_t
spsrWriteByInstr(uint32_t spsr, uint32_t val,
uint8_t byteMask, bool affectState)
{
uint32_t bitMask = 0;
if (bits(byteMask, 3))
bitMask = bitMask | mask(31, 24);
if (bits(byteMask, 2))
bitMask = bitMask | mask(19, 16);
if (bits(byteMask, 1))
bitMask = bitMask | mask(15, 8);
if (bits(byteMask, 0))
bitMask = bitMask | mask(7, 0);
return ((spsr & ~bitMask) | (val & bitMask));
}
static inline Addr
readPC(ExecContext *xc)
{
return xc->pcState().instPC();
}
static inline void
setNextPC(ExecContext *xc, Addr val)
{
PCState pc = xc->pcState();
pc.instNPC(val);
xc->pcState(pc);
}
template<class T>
static inline T
cSwap(T val, bool big)
{
if (big) {
return gtobe(val);
} else {
return gtole(val);
}
}
template<class T, class E>
static inline T
cSwap(T val, bool big)
{
const unsigned count = sizeof(T) / sizeof(E);
union {
T tVal;
E eVals[count];
} conv;
conv.tVal = htog(val);
if (big) {
for (unsigned i = 0; i < count; i++) {
conv.eVals[i] = gtobe(conv.eVals[i]);
}
} else {
for (unsigned i = 0; i < count; i++) {
conv.eVals[i] = gtole(conv.eVals[i]);
}
}
return gtoh(conv.tVal);
}
// Perform an interworking branch.
static inline void
setIWNextPC(ExecContext *xc, Addr val)
{
PCState pc = xc->pcState();
pc.instIWNPC(val);
xc->pcState(pc);
}
// Perform an interworking branch in ARM mode, a regular branch
// otherwise.
static inline void
setAIWNextPC(ExecContext *xc, Addr val)
{
PCState pc = xc->pcState();
pc.instAIWNPC(val);
xc->pcState(pc);
}
inline Fault
disabledFault() const
{
return std::make_shared<UndefinedInstruction>(machInst, false,
mnemonic, true);
}
// Utility function used by checkForWFxTrap32 and checkForWFxTrap64
// Returns true if processor has to trap a WFI/WFE instruction.
bool isWFxTrapping(ThreadContext *tc,
ExceptionLevel targetEL, bool isWfe) const;
/**
* Trigger a Software Breakpoint.
*
* See aarch32/exceptions/debug/AArch32.SoftwareBreakpoint in the
* ARM ARM psueodcode library.
*/
Fault softwareBreakpoint32(ExecContext *xc, uint16_t imm) const;
/**
* Trap an access to Advanced SIMD or FP registers due to access
* control bits.
*
* See aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap in the
* ARM ARM psueodcode library.
*
* @param el Target EL for the trap
*/
Fault advSIMDFPAccessTrap64(ExceptionLevel el) const;
/**
* Check an Advaned SIMD access against CPTR_EL2 and CPTR_EL3.
*
* See aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap in the
* ARM ARM psueodcode library.
*/
Fault checkFPAdvSIMDTrap64(ThreadContext *tc, CPSR cpsr) const;
/**
* Check an Advaned SIMD access against CPACR_EL1, CPTR_EL2, and
* CPTR_EL3.
*
* See aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled in the
* ARM ARM psueodcode library.
*/
Fault checkFPAdvSIMDEnabled64(ThreadContext *tc,
CPSR cpsr, CPACR cpacr) const;
/**
* Check if a VFP/SIMD access from aarch32 should be allowed.
*
* See aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled in the
* ARM ARM psueodcode library.
*/
Fault checkAdvSIMDOrFPEnabled32(ThreadContext *tc,
CPSR cpsr, CPACR cpacr,
NSACR nsacr, FPEXC fpexc,
bool fpexc_check, bool advsimd) const;
/**
* Check if WFE/WFI instruction execution in aarch32 should be trapped.
*
* See aarch32/exceptions/traps/AArch32.checkForWFxTrap in the
* ARM ARM psueodcode library.
*/
Fault checkForWFxTrap32(ThreadContext *tc,
ExceptionLevel tgtEl, bool isWfe) const;
/**
* Check if WFE/WFI instruction execution in aarch64 should be trapped.
*
* See aarch64/exceptions/traps/AArch64.checkForWFxTrap in the
* ARM ARM psueodcode library.
*/
Fault checkForWFxTrap64(ThreadContext *tc,
ExceptionLevel tgtEl, bool isWfe) const;
/**
* WFE/WFI trapping helper function.
*/
Fault trapWFx(ThreadContext *tc, CPSR cpsr, SCR scr, bool isWfe) const;
/**
* Check if SETEND instruction execution in aarch32 should be trapped.
*
* See aarch32/exceptions/traps/AArch32.CheckSETENDEnabled in the
* ARM ARM pseudocode library.
*/
Fault checkSETENDEnabled(ThreadContext *tc, CPSR cpsr) const;
/**
* UNDEFINED behaviour in AArch32
*
* See aarch32/exceptions/traps/AArch32.UndefinedFault in the
* ARM ARM pseudocode library.
*/
Fault undefinedFault32(ThreadContext *tc, ExceptionLevel el) const;
/**
* UNDEFINED behaviour in AArch64
*
* See aarch64/exceptions/traps/AArch64.UndefinedFault in the
* ARM ARM pseudocode library.
*/
Fault undefinedFault64(ThreadContext *tc, ExceptionLevel el) const;
/**
* Get the new PSTATE from a SPSR register in preparation for an
* exception return.
*
* See shared/functions/system/SetPSTATEFromPSR in the ARM ARM
* pseudocode library.
*/
CPSR getPSTATEFromPSR(ThreadContext *tc, CPSR cpsr, CPSR spsr) const;
/**
* Return true if exceptions normally routed to EL1 are being handled
* at an Exception level using AArch64, because either EL1 is using
* AArch64 or TGE is in force and EL2 is using AArch64.
*
* See aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64
* in the ARM ARM pseudocode library.
*/
bool generalExceptionsToAArch64(ThreadContext *tc,
ExceptionLevel pstateEL) const;
public:
virtual void
annotateFault(ArmFault *fault) {}
uint8_t
getIntWidth() const
{
return intWidth;
}
/** Returns the byte size of current instruction */
ssize_t
instSize() const
{
return (!machInst.thumb || machInst.bigThumb) ? 4 : 2;
}
/**
* Returns the real encoding of the instruction:
* the machInst field is in fact always 64 bit wide and
* contains some instruction metadata, which means it differs
* from the real opcode.
*/
MachInst
encoding() const
{
return static_cast<MachInst>(machInst & (mask(instSize() * 8)));
}
size_t
asBytes(void *buf, size_t max_size) override
{
return simpleAsBytes(buf, max_size, machInst);
}
};
}
#endif //__ARCH_ARM_INSTS_STATICINST_HH__