| // -*- mode:c++ -*- |
| |
| // Copyright (c) 2007 MIPS Technologies, Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer; |
| // redistributions in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution; |
| // neither the name of the copyright holders nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: Korey Sewell |
| // Brett Miller |
| // Jaidev Patwardhan |
| |
| //////////////////////////////////////////////////////////////////// |
| // |
| // The actual MIPS32 ISA decoder |
| // ----------------------------- |
| // The following instructions are specified in the MIPS32 ISA |
| // Specification. Decoding closely follows the style specified |
| // in the MIPS32 ISA specification document starting with Table |
| // A-2 (document available @ http://www.mips.com) |
| // |
| decode OPCODE_HI default Unknown::unknown() { |
| //Table A-2 |
| 0x0: decode OPCODE_LO { |
| 0x0: decode FUNCTION_HI { |
| 0x0: decode FUNCTION_LO { |
| 0x1: decode MOVCI { |
| format BasicOp { |
| 0: movf({{ |
| Rd = (getCondCode(FCSR, CC) == 0) ? Rd : Rs; |
| }}); |
| 1: movt({{ |
| Rd = (getCondCode(FCSR, CC) == 1) ? Rd : Rs; |
| }}); |
| } |
| } |
| |
| format BasicOp { |
| //Table A-3 Note: "Specific encodings of the rd, rs, and |
| //rt fields are used to distinguish SLL, SSNOP, and EHB |
| //functions |
| 0x0: decode RS { |
| 0x0: decode RT_RD { |
| 0x0: decode SA default Nop::nop() { |
| 0x1: ssnop({{;}}); |
| 0x3: ehb({{;}}); |
| } |
| default: sll({{ Rd = Rt_uw << SA; }}); |
| } |
| } |
| |
| 0x2: decode RS_SRL { |
| 0x0:decode SRL { |
| 0: srl({{ Rd = Rt_uw >> SA; }}); |
| |
| //Hardcoded assuming 32-bit ISA, |
| //probably need parameter here |
| 1: rotr({{ |
| Rd = (Rt_uw << (32 - SA)) | (Rt_uw >> SA); |
| }}); |
| } |
| } |
| |
| 0x3: decode RS { |
| 0x0: sra({{ |
| uint32_t temp = Rt >> SA; |
| if ( (Rt & 0x80000000) > 0 ) { |
| uint32_t mask = 0x80000000; |
| for(int i=0; i < SA; i++) { |
| temp |= mask; |
| mask = mask >> 1; |
| } |
| } |
| Rd = temp; |
| }}); |
| } |
| |
| 0x4: sllv({{ Rd = Rt_uw << Rs<4:0>; }}); |
| |
| 0x6: decode SRLV { |
| 0: srlv({{ Rd = Rt_uw >> Rs<4:0>; }}); |
| |
| //Hardcoded assuming 32-bit ISA, |
| //probably need parameter here |
| 1: rotrv({{ |
| Rd = (Rt_uw << (32 - Rs<4:0>)) | |
| (Rt_uw >> Rs<4:0>); |
| }}); |
| } |
| |
| 0x7: srav({{ |
| int shift_amt = Rs<4:0>; |
| |
| uint32_t temp = Rt >> shift_amt; |
| |
| if ((Rt & 0x80000000) > 0) { |
| uint32_t mask = 0x80000000; |
| for (int i = 0; i < shift_amt; i++) { |
| temp |= mask; |
| mask = mask >> 1; |
| } |
| } |
| Rd = temp; |
| }}); |
| } |
| } |
| |
| 0x1: decode FUNCTION_LO { |
| //Table A-3 Note: "Specific encodings of the hint field are |
| //used to distinguish JR from JR.HB and JALR from JALR.HB" |
| format Jump { |
| 0x0: decode HINT { |
| 0x1: jr_hb({{ |
| Config1Reg config1 = Config1; |
| if (config1.ca == 0) { |
| NNPC = Rs; |
| } else { |
| panic("MIPS16e not supported\n"); |
| } |
| }}, IsReturn, ClearHazards); |
| default: jr({{ |
| Config1Reg config1 = Config1; |
| if (config1.ca == 0) { |
| NNPC = Rs; |
| } else { |
| panic("MIPS16e not supported\n"); |
| } |
| }}, IsReturn); |
| } |
| |
| 0x1: decode HINT { |
| 0x1: jalr_hb({{ |
| Rd = NNPC; |
| NNPC = Rs; |
| }}, IsCall, ClearHazards); |
| default: jalr({{ |
| Rd = NNPC; |
| NNPC = Rs; |
| }}, IsCall); |
| } |
| } |
| |
| format BasicOp { |
| 0x2: movz({{ Rd = (Rt == 0) ? Rs : Rd; }}); |
| 0x3: movn({{ Rd = (Rt != 0) ? Rs : Rd; }}); |
| 0x4: decode FullSystemInt { |
| 0: syscall_se({{ xc->syscall(R2, &fault); }}, |
| IsSerializeAfter, IsNonSpeculative); |
| default: syscall({{ fault = std::make_shared<SystemCallFault>(); }}); |
| } |
| 0x7: sync({{ ; }}, IsMemBarrier); |
| 0x5: break({{fault = std::make_shared<BreakpointFault>();}}); |
| } |
| |
| } |
| |
| 0x2: decode FUNCTION_LO { |
| 0x0: HiLoRsSelOp::mfhi({{ Rd = HI_RS_SEL; }}, |
| IntMultOp, IsIprAccess); |
| 0x1: HiLoRdSelOp::mthi({{ HI_RD_SEL = Rs; }}); |
| 0x2: HiLoRsSelOp::mflo({{ Rd = LO_RS_SEL; }}, |
| IntMultOp, IsIprAccess); |
| 0x3: HiLoRdSelOp::mtlo({{ LO_RD_SEL = Rs; }}); |
| } |
| |
| 0x3: decode FUNCTION_LO { |
| format HiLoRdSelValOp { |
| 0x0: mult({{ val = Rs_sd * Rt_sd; }}, IntMultOp); |
| 0x1: multu({{ val = Rs_ud * Rt_ud; }}, IntMultOp); |
| } |
| |
| format HiLoOp { |
| 0x2: div({{ |
| if (Rt_sd != 0) { |
| HI0 = Rs_sd % Rt_sd; |
| LO0 = Rs_sd / Rt_sd; |
| } |
| }}, IntDivOp); |
| |
| 0x3: divu({{ |
| if (Rt_ud != 0) { |
| HI0 = Rs_ud % Rt_ud; |
| LO0 = Rs_ud / Rt_ud; |
| } |
| }}, IntDivOp); |
| } |
| } |
| |
| 0x4: decode HINT { |
| 0x0: decode FUNCTION_LO { |
| format IntOp { |
| 0x0: add({{ |
| IntReg result; |
| Rd = result = Rs + Rt; |
| if (FullSystem && |
| findOverflow(32, result, Rs, Rt)) { |
| fault = std::make_shared<IntegerOverflowFault>(); |
| } |
| }}); |
| 0x1: addu({{ Rd_sw = Rs_sw + Rt_sw;}}); |
| 0x2: sub({{ |
| IntReg result; |
| Rd = result = Rs - Rt; |
| if (FullSystem && |
| findOverflow(32, result, Rs, ~Rt)) { |
| fault = std::make_shared<IntegerOverflowFault>(); |
| } |
| }}); |
| 0x3: subu({{ Rd_sw = Rs_sw - Rt_sw; }}); |
| 0x4: and({{ Rd = Rs & Rt; }}); |
| 0x5: or({{ Rd = Rs | Rt; }}); |
| 0x6: xor({{ Rd = Rs ^ Rt; }}); |
| 0x7: nor({{ Rd = ~(Rs | Rt); }}); |
| } |
| } |
| } |
| |
| 0x5: decode HINT { |
| 0x0: decode FUNCTION_LO { |
| format IntOp{ |
| 0x2: slt({{ Rd_sw = (Rs_sw < Rt_sw) ? 1 : 0 }}); |
| 0x3: sltu({{ Rd_uw = (Rs_uw < Rt_uw) ? 1 : 0 }}); |
| } |
| } |
| } |
| |
| 0x6: decode FUNCTION_LO { |
| format Trap { |
| 0x0: tge({{ cond = (Rs_sw >= Rt_sw); }}); |
| 0x1: tgeu({{ cond = (Rs_uw >= Rt_uw); }}); |
| 0x2: tlt({{ cond = (Rs_sw < Rt_sw); }}); |
| 0x3: tltu({{ cond = (Rs_uw < Rt_uw); }}); |
| 0x4: teq({{ cond = (Rs_sw == Rt_sw); }}); |
| 0x6: tne({{ cond = (Rs_sw != Rt_sw); }}); |
| } |
| } |
| } |
| |
| 0x1: decode REGIMM_HI { |
| 0x0: decode REGIMM_LO { |
| format Branch { |
| 0x0: bltz({{ cond = (Rs_sw < 0); }}); |
| 0x1: bgez({{ cond = (Rs_sw >= 0); }}); |
| 0x2: bltzl({{ cond = (Rs_sw < 0); }}, Likely); |
| 0x3: bgezl({{ cond = (Rs_sw >= 0); }}, Likely); |
| } |
| } |
| |
| 0x1: decode REGIMM_LO { |
| format TrapImm { |
| 0x0: tgei( {{ cond = (Rs_sw >= (int16_t)INTIMM); }}); |
| 0x1: tgeiu({{ |
| cond = (Rs_uw >= (uint32_t)(int32_t)(int16_t)INTIMM); |
| }}); |
| 0x2: tlti( {{ cond = (Rs_sw < (int16_t)INTIMM); }}); |
| 0x3: tltiu({{ |
| cond = (Rs_uw < (uint32_t)(int32_t)(int16_t)INTIMM); |
| }}); |
| 0x4: teqi( {{ cond = (Rs_sw == (int16_t)INTIMM); }}); |
| 0x6: tnei( {{ cond = (Rs_sw != (int16_t)INTIMM); }}); |
| } |
| } |
| |
| 0x2: decode REGIMM_LO { |
| format Branch { |
| 0x0: bltzal({{ cond = (Rs_sw < 0); }}, Link); |
| 0x1: decode RS { |
| 0x0: bal ({{ cond = 1; }}, IsCall, Link); |
| default: bgezal({{ cond = (Rs_sw >= 0); }}, Link); |
| } |
| 0x2: bltzall({{ cond = (Rs_sw < 0); }}, Link, Likely); |
| 0x3: bgezall({{ cond = (Rs_sw >= 0); }}, Link, Likely); |
| } |
| } |
| |
| 0x3: decode REGIMM_LO { |
| // from Table 5-4 MIPS32 REGIMM Encoding of rt Field |
| // (DSP ASE MANUAL) |
| 0x4: DspBranch::bposge32({{ cond = (dspctl<5:0> >= 32); }}); |
| format WarnUnimpl { |
| 0x7: synci(); |
| } |
| } |
| } |
| |
| format Jump { |
| 0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }}); |
| 0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }}, |
| IsCall, Link); |
| } |
| |
| format Branch { |
| 0x4: decode RS_RT { |
| 0x0: b({{ cond = 1; }}); |
| default: beq({{ cond = (Rs_sw == Rt_sw); }}); |
| } |
| 0x5: bne({{ cond = (Rs_sw != Rt_sw); }}); |
| 0x6: blez({{ cond = (Rs_sw <= 0); }}); |
| 0x7: bgtz({{ cond = (Rs_sw > 0); }}); |
| } |
| } |
| |
| 0x1: decode OPCODE_LO { |
| format IntImmOp { |
| 0x0: addi({{ |
| IntReg result; |
| Rt = result = Rs + imm; |
| if (FullSystem && |
| findOverflow(32, result, Rs, imm)) { |
| fault = std::make_shared<IntegerOverflowFault>(); |
| } |
| }}); |
| 0x1: addiu({{ Rt_sw = Rs_sw + imm; }}); |
| 0x2: slti({{ Rt_sw = (Rs_sw < imm) ? 1 : 0 }}); |
| 0x3: sltiu({{ Rt_uw = (Rs_uw < (uint32_t)sextImm) ? 1 : 0;}}); |
| 0x4: andi({{ Rt_sw = Rs_sw & zextImm; }}); |
| 0x5: ori({{ Rt_sw = Rs_sw | zextImm; }}); |
| 0x6: xori({{ Rt_sw = Rs_sw ^ zextImm; }}); |
| |
| 0x7: decode RS { |
| 0x0: lui({{ Rt = imm << 16; }}); |
| } |
| } |
| } |
| |
| 0x2: decode OPCODE_LO { |
| //Table A-11 MIPS32 COP0 Encoding of rs Field |
| 0x0: decode RS_MSB { |
| 0x0: decode RS { |
| format CP0Control { |
| 0x0: mfc0({{ |
| Config3Reg config3 = Config3; |
| PageGrainReg pageGrain = PageGrain; |
| Rt = CP0_RD_SEL; |
| /* Hack for PageMask */ |
| if (RD == 5) { |
| // PageMask |
| if (config3.sp == 0 || pageGrain.esp == 0) |
| Rt &= 0xFFFFE7FF; |
| } |
| }}); |
| 0x4: mtc0({{ |
| CP0_RD_SEL = Rt; |
| CauseReg cause = Cause; |
| IntCtlReg intCtl = IntCtl; |
| if (RD == 11) { |
| // Compare |
| if (cause.ti == 1) { |
| cause.ti = 0; |
| int offset = 10; // corresponding to cause.ip0 |
| offset += intCtl.ipti - 2; |
| replaceBits(cause, offset, offset, 0); |
| } |
| } |
| Cause = cause; |
| }}); |
| } |
| format CP0Unimpl { |
| 0x1: dmfc0(); |
| 0x5: dmtc0(); |
| default: unknown(); |
| } |
| format MT_MFTR { |
| // Decode MIPS MT MFTR instruction into sub-instructions |
| 0x8: decode MT_U { |
| 0x0: mftc0({{ |
| data = xc->readRegOtherThread(RegId(MiscRegClass, |
| (RT << 3 | SEL))); |
| }}); |
| 0x1: decode SEL { |
| 0x0: mftgpr({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, RT)); |
| }}); |
| 0x1: decode RT { |
| 0x0: mftlo_dsp0({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO0)); |
| }}); |
| 0x1: mfthi_dsp0({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI0)); |
| }}); |
| 0x2: mftacx_dsp0({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX0)); |
| }}); |
| 0x4: mftlo_dsp1({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO1)); |
| }}); |
| 0x5: mfthi_dsp1({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI1)); |
| }}); |
| 0x6: mftacx_dsp1({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX1)); |
| }}); |
| 0x8: mftlo_dsp2({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO2)); |
| }}); |
| 0x9: mfthi_dsp2({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI2)); |
| }}); |
| 0x10: mftacx_dsp2({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX2)); |
| }}); |
| 0x12: mftlo_dsp3({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO3)); |
| }}); |
| 0x13: mfthi_dsp3({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI3)); |
| }}); |
| 0x14: mftacx_dsp3({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX3)); |
| }}); |
| 0x16: mftdsp({{ |
| data = xc->readRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_CONTROL)); |
| }}); |
| default: CP0Unimpl::unknown(); |
| } |
| 0x2: decode MT_H { |
| 0x0: mftc1({{ |
| data = xc->readRegOtherThread( |
| RegId(FloatRegClass, RT)); |
| }}); |
| 0x1: mfthc1({{ |
| data = xc->readRegOtherThread( |
| RegId(FloatRegClass, RT)); |
| }}); |
| } |
| 0x3: cftc1({{ |
| uint32_t fcsr_val = xc->readRegOtherThread( |
| RegId(FloatRegClass, FLOATREG_FCSR)); |
| switch (RT) { |
| case 0: |
| data = xc->readRegOtherThread( |
| RegId(MiscRegClass, FLOATREG_FIR)); |
| break; |
| case 25: |
| data = (fcsr_val & 0xFE000000 >> 24) | |
| (fcsr_val & 0x00800000 >> 23); |
| break; |
| case 26: |
| data = fcsr_val & 0x0003F07C; |
| break; |
| case 28: |
| data = (fcsr_val & 0x00000F80) | |
| (fcsr_val & 0x01000000 >> 21) | |
| (fcsr_val & 0x00000003); |
| break; |
| case 31: |
| data = fcsr_val; |
| break; |
| default: |
| fatal("FP Control Value (%d) Not Valid"); |
| } |
| }}); |
| default: CP0Unimpl::unknown(); |
| } |
| } |
| } |
| |
| format MT_MTTR { |
| // Decode MIPS MT MTTR instruction into sub-instructions |
| 0xC: decode MT_U { |
| 0x0: mttc0({{ xc->setRegOtherThread( |
| RegId(MiscRegClass, (RD << 3 | SEL)), Rt); |
| }}); |
| 0x1: decode SEL { |
| 0x0: mttgpr({{ xc->setRegOtherThread( |
| RegId(IntRegClass, RD), Rt); |
| }}); |
| 0x1: decode RT { |
| 0x0: mttlo_dsp0({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO0), Rt); |
| }}); |
| 0x1: mtthi_dsp0({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI0), Rt); |
| }}); |
| 0x2: mttacx_dsp0({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX0), Rt); |
| }}); |
| 0x4: mttlo_dsp1({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO1), Rt); |
| }}); |
| 0x5: mtthi_dsp1({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI1), Rt); |
| }}); |
| 0x6: mttacx_dsp1({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX1), Rt); |
| }}); |
| 0x8: mttlo_dsp2({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO2), Rt); |
| }}); |
| 0x9: mtthi_dsp2({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI2), Rt); |
| }}); |
| 0x10: mttacx_dsp2({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX2), Rt); |
| }}); |
| 0x12: mttlo_dsp3({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_LO3), Rt); |
| }}); |
| 0x13: mtthi_dsp3({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_HI3), Rt); |
| }}); |
| 0x14: mttacx_dsp3({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_ACX3), Rt); |
| }}); |
| 0x16: mttdsp({{ xc->setRegOtherThread( |
| RegId(IntRegClass, INTREG_DSP_CONTROL), Rt); |
| }}); |
| default: CP0Unimpl::unknown(); |
| |
| } |
| 0x2: mttc1({{ |
| uint64_t data = xc->readRegOtherThread( |
| RegId(FloatRegClass, RD)); |
| data = insertBits(data, MT_H ? 63 : 31, |
| MT_H ? 32 : 0, Rt); |
| xc->setRegOtherThread(RegId(FloatRegClass, RD), |
| data); |
| }}); |
| 0x3: cttc1({{ |
| uint32_t data; |
| switch (RD) { |
| case 25: |
| data = (Rt_uw<7:1> << 25) | // move 31-25 |
| (FCSR & 0x01000000) | // bit 24 |
| (FCSR & 0x004FFFFF); // bit 22-0 |
| break; |
| case 26: |
| data = (FCSR & 0xFFFC0000) | // move 31-18 |
| Rt_uw<17:12> << 12 | // bit 17-12 |
| (FCSR & 0x00000F80) << 7 | // bit 11-7 |
| Rt_uw<6:2> << 2 | // bit 6-2 |
| (FCSR & 0x00000002); // bit 1...0 |
| break; |
| case 28: |
| data = (FCSR & 0xFE000000) | // move 31-25 |
| Rt_uw<2:2> << 24 | // bit 24 |
| (FCSR & 0x00FFF000) << 23 | // bit 23-12 |
| Rt_uw<11:7> << 7 | // bit 24 |
| (FCSR & 0x000007E) | |
| Rt_uw<1:0>; // bit 22-0 |
| break; |
| case 31: |
| data = Rt_uw; |
| break; |
| default: |
| panic("FP Control Value (%d) " |
| "Not Available. Ignoring " |
| "Access to Floating Control " |
| "S""tatus Register", FS); |
| } |
| xc->setRegOtherThread( |
| RegId(FloatRegClass, FLOATREG_FCSR), data); |
| }}); |
| default: CP0Unimpl::unknown(); |
| } |
| } |
| } |
| 0xB: decode RD { |
| format MT_Control { |
| 0x0: decode POS { |
| 0x0: decode SEL { |
| 0x1: decode SC { |
| 0x0: dvpe({{ |
| MVPControlReg mvpControl = MVPControl; |
| VPEConf0Reg vpeConf0 = VPEConf0; |
| Rt = MVPControl; |
| if (vpeConf0.mvp == 1) |
| mvpControl.evp = 0; |
| MVPControl = mvpControl; |
| }}); |
| 0x1: evpe({{ |
| MVPControlReg mvpControl = MVPControl; |
| VPEConf0Reg vpeConf0 = VPEConf0; |
| Rt = MVPControl; |
| if (vpeConf0.mvp == 1) |
| mvpControl.evp = 1; |
| MVPControl = mvpControl; |
| }}); |
| default:CP0Unimpl::unknown(); |
| } |
| default:CP0Unimpl::unknown(); |
| } |
| default:CP0Unimpl::unknown(); |
| } |
| 0x1: decode POS { |
| 0xF: decode SEL { |
| 0x1: decode SC { |
| 0x0: dmt({{ |
| VPEControlReg vpeControl = VPEControl; |
| Rt = vpeControl; |
| vpeControl.te = 0; |
| VPEControl = vpeControl; |
| }}); |
| 0x1: emt({{ |
| VPEControlReg vpeControl = VPEControl; |
| Rt = vpeControl; |
| vpeControl.te = 1; |
| VPEControl = vpeControl; |
| }}); |
| default:CP0Unimpl::unknown(); |
| } |
| default:CP0Unimpl::unknown(); |
| } |
| default:CP0Unimpl::unknown(); |
| } |
| } |
| 0xC: decode POS { |
| 0x0: decode SC { |
| 0x0: CP0Control::di({{ |
| StatusReg status = Status; |
| ConfigReg config = Config; |
| // Rev 2.0 or beyond? |
| if (config.ar >= 1) { |
| Rt = status; |
| status.ie = 0; |
| } else { |
| // Enable this else branch once we |
| // actually set values for Config on init |
| fault = std::make_shared<ReservedInstructionFault>(); |
| } |
| Status = status; |
| }}); |
| 0x1: CP0Control::ei({{ |
| StatusReg status = Status; |
| ConfigReg config = Config; |
| if (config.ar >= 1) { |
| Rt = status; |
| status.ie = 1; |
| } else { |
| fault = std::make_shared<ReservedInstructionFault>(); |
| } |
| }}); |
| default:CP0Unimpl::unknown(); |
| } |
| } |
| default: CP0Unimpl::unknown(); |
| } |
| format CP0Control { |
| 0xA: rdpgpr({{ |
| ConfigReg config = Config; |
| if (config.ar >= 1) { |
| // Rev 2 of the architecture |
| panic("Shadow Sets Not Fully Implemented.\n"); |
| } else { |
| fault = std::make_shared<ReservedInstructionFault>(); |
| } |
| }}); |
| 0xE: wrpgpr({{ |
| ConfigReg config = Config; |
| if (config.ar >= 1) { |
| // Rev 2 of the architecture |
| panic("Shadow Sets Not Fully Implemented.\n"); |
| } else { |
| fault = std::make_shared<ReservedInstructionFault>(); |
| } |
| }}); |
| } |
| } |
| |
| //Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO |
| 0x1: decode FUNCTION { |
| format CP0Control { |
| 0x18: eret({{ |
| StatusReg status = Status; |
| ConfigReg config = Config; |
| SRSCtlReg srsCtl = SRSCtl; |
| DPRINTF(MipsPRA,"Restoring PC - %x\n",EPC); |
| if (status.erl == 1) { |
| status.erl = 0; |
| NPC = ErrorEPC; |
| // Need to adjust NNPC, otherwise things break |
| NNPC = ErrorEPC + sizeof(MachInst); |
| } else { |
| NPC = EPC; |
| // Need to adjust NNPC, otherwise things break |
| NNPC = EPC + sizeof(MachInst); |
| status.exl = 0; |
| if (config.ar >=1 && |
| srsCtl.hss > 0 && |
| status.bev == 0) { |
| srsCtl.css = srsCtl.pss; |
| //xc->setShadowSet(srsCtl.pss); |
| } |
| } |
| LLFlag = 0; |
| Status = status; |
| SRSCtl = srsCtl; |
| }}, IsReturn, IsSerializing, IsERET); |
| |
| 0x1F: deret({{ |
| DebugReg debug = Debug; |
| if (debug.dm == 1) { |
| debug.dm = 1; |
| debug.iexi = 0; |
| NPC = DEPC; |
| } else { |
| NPC = NPC; |
| // Undefined; |
| } |
| Debug = debug; |
| }}, IsReturn, IsSerializing, IsERET); |
| } |
| format CP0TLB { |
| 0x01: tlbr({{ |
| MipsISA::PTE *PTEntry = |
| dynamic_cast<MipsISA::TLB *>( |
| xc->tcBase()->getITBPtr())-> |
| getEntry(Index & 0x7FFFFFFF); |
| if (PTEntry == NULL) { |
| fatal("Invalid PTE Entry received on " |
| "a TLBR instruction\n"); |
| } |
| /* Setup PageMask */ |
| // If 1KB pages are not enabled, a read of PageMask |
| // must return 0b00 in bits 12, 11 |
| PageMask = (PTEntry->Mask << 11); |
| /* Setup EntryHi */ |
| EntryHi = ((PTEntry->VPN << 11) | (PTEntry->asid)); |
| /* Setup Entry Lo0 */ |
| EntryLo0 = ((PTEntry->PFN0 << 6) | |
| (PTEntry->C0 << 3) | |
| (PTEntry->D0 << 2) | |
| (PTEntry->V0 << 1) | |
| PTEntry->G); |
| /* Setup Entry Lo1 */ |
| EntryLo1 = ((PTEntry->PFN1 << 6) | |
| (PTEntry->C1 << 3) | |
| (PTEntry->D1 << 2) | |
| (PTEntry->V1 << 1) | |
| PTEntry->G); |
| }}); // Need to hook up to TLB |
| |
| 0x02: tlbwi({{ |
| //Create PTE |
| MipsISA::PTE newEntry; |
| //Write PTE |
| newEntry.Mask = (Addr)(PageMask >> 11); |
| newEntry.VPN = (Addr)(EntryHi >> 11); |
| /* PageGrain _ ESP Config3 _ SP */ |
| if (bits(PageGrain, 28) == 0 || bits(Config3, 4) ==0) { |
| // If 1KB pages are *NOT* enabled, lowest bits of |
| // the mask are 0b11 for TLB writes |
| newEntry.Mask |= 0x3; |
| // Reset bits 0 and 1 if 1KB pages are not enabled |
| newEntry.VPN &= 0xFFFFFFFC; |
| } |
| newEntry.asid = (uint8_t)(EntryHi & 0xFF); |
| |
| newEntry.PFN0 = (Addr)(EntryLo0 >> 6); |
| newEntry.PFN1 = (Addr)(EntryLo1 >> 6); |
| newEntry.D0 = (bool)((EntryLo0 >> 2) & 1); |
| newEntry.D1 = (bool)((EntryLo1 >> 2) & 1); |
| newEntry.V1 = (bool)((EntryLo1 >> 1) & 1); |
| newEntry.V0 = (bool)((EntryLo0 >> 1) & 1); |
| newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1); |
| newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7); |
| newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7); |
| /* Now, compute the AddrShiftAmount and OffsetMask - |
| TLB optimizations */ |
| /* Addr Shift Amount for 1KB or larger pages */ |
| if ((newEntry.Mask & 0xFFFF) == 3) { |
| newEntry.AddrShiftAmount = 12; |
| } else if ((newEntry.Mask & 0xFFFF) == 0x0000) { |
| newEntry.AddrShiftAmount = 10; |
| } else if ((newEntry.Mask & 0xFFFC) == 0x000C) { |
| newEntry.AddrShiftAmount = 14; |
| } else if ((newEntry.Mask & 0xFFF0) == 0x0030) { |
| newEntry.AddrShiftAmount = 16; |
| } else if ((newEntry.Mask & 0xFFC0) == 0x00C0) { |
| newEntry.AddrShiftAmount = 18; |
| } else if ((newEntry.Mask & 0xFF00) == 0x0300) { |
| newEntry.AddrShiftAmount = 20; |
| } else if ((newEntry.Mask & 0xFC00) == 0x0C00) { |
| newEntry.AddrShiftAmount = 22; |
| } else if ((newEntry.Mask & 0xF000) == 0x3000) { |
| newEntry.AddrShiftAmount = 24; |
| } else if ((newEntry.Mask & 0xC000) == 0xC000) { |
| newEntry.AddrShiftAmount = 26; |
| } else if ((newEntry.Mask & 0x30000) == 0x30000) { |
| newEntry.AddrShiftAmount = 28; |
| } else { |
| fatal("Invalid Mask Pattern Detected!\n"); |
| } |
| newEntry.OffsetMask = |
| (1 << newEntry.AddrShiftAmount) - 1; |
| |
| auto ptr = dynamic_cast<MipsISA::TLB *>( |
| xc->tcBase()->getITBPtr()); |
| Config3Reg config3 = Config3; |
| PageGrainReg pageGrain = PageGrain; |
| int SP = 0; |
| if (bits(config3, config3.sp) == 1 && |
| bits(pageGrain, pageGrain.esp) == 1) { |
| SP = 1; |
| } |
| ptr->insertAt(newEntry, Index & 0x7FFFFFFF, SP); |
| }}); |
| 0x06: tlbwr({{ |
| //Create PTE |
| MipsISA::PTE newEntry; |
| //Write PTE |
| newEntry.Mask = (Addr)(PageMask >> 11); |
| newEntry.VPN = (Addr)(EntryHi >> 11); |
| /* PageGrain _ ESP Config3 _ SP */ |
| if (bits(PageGrain, 28) == 0 || |
| bits(Config3, 4) == 0) { |
| // If 1KB pages are *NOT* enabled, lowest bits of |
| // the mask are 0b11 for TLB writes |
| newEntry.Mask |= 0x3; |
| // Reset bits 0 and 1 if 1KB pages are not enabled |
| newEntry.VPN &= 0xFFFFFFFC; |
| } |
| newEntry.asid = (uint8_t)(EntryHi & 0xFF); |
| |
| newEntry.PFN0 = (Addr)(EntryLo0 >> 6); |
| newEntry.PFN1 = (Addr)(EntryLo1 >> 6); |
| newEntry.D0 = (bool)((EntryLo0 >> 2) & 1); |
| newEntry.D1 = (bool)((EntryLo1 >> 2) & 1); |
| newEntry.V1 = (bool)((EntryLo1 >> 1) & 1); |
| newEntry.V0 = (bool)((EntryLo0 >> 1) & 1); |
| newEntry.G = (bool)((EntryLo0 & EntryLo1) & 1); |
| newEntry.C0 = (uint8_t)((EntryLo0 >> 3) & 0x7); |
| newEntry.C1 = (uint8_t)((EntryLo1 >> 3) & 0x7); |
| /* Now, compute the AddrShiftAmount and OffsetMask - |
| TLB optimizations */ |
| /* Addr Shift Amount for 1KB or larger pages */ |
| if ((newEntry.Mask & 0xFFFF) == 3){ |
| newEntry.AddrShiftAmount = 12; |
| } else if ((newEntry.Mask & 0xFFFF) == 0x0000) { |
| newEntry.AddrShiftAmount = 10; |
| } else if ((newEntry.Mask & 0xFFFC) == 0x000C) { |
| newEntry.AddrShiftAmount = 14; |
| } else if ((newEntry.Mask & 0xFFF0) == 0x0030) { |
| newEntry.AddrShiftAmount = 16; |
| } else if ((newEntry.Mask & 0xFFC0) == 0x00C0) { |
| newEntry.AddrShiftAmount = 18; |
| } else if ((newEntry.Mask & 0xFF00) == 0x0300) { |
| newEntry.AddrShiftAmount = 20; |
| } else if ((newEntry.Mask & 0xFC00) == 0x0C00) { |
| newEntry.AddrShiftAmount = 22; |
| } else if ((newEntry.Mask & 0xF000) == 0x3000) { |
| newEntry.AddrShiftAmount = 24; |
| } else if ((newEntry.Mask & 0xC000) == 0xC000) { |
| newEntry.AddrShiftAmount = 26; |
| } else if ((newEntry.Mask & 0x30000) == 0x30000) { |
| newEntry.AddrShiftAmount = 28; |
| } else { |
| fatal("Invalid Mask Pattern Detected!\n"); |
| } |
| newEntry.OffsetMask = |
| (1 << newEntry.AddrShiftAmount) - 1; |
| |
| auto ptr = dynamic_cast<MipsISA::TLB *>( |
| xc->tcBase()->getITBPtr()); |
| Config3Reg config3 = Config3; |
| PageGrainReg pageGrain = PageGrain; |
| int SP = 0; |
| if (bits(config3, config3.sp) == 1 && |
| bits(pageGrain, pageGrain.esp) == 1) { |
| SP = 1; |
| } |
| ptr->insertAt(newEntry, Random, SP); |
| }}); |
| |
| 0x08: tlbp({{ |
| Config3Reg config3 = Config3; |
| PageGrainReg pageGrain = PageGrain; |
| EntryHiReg entryHi = EntryHi; |
| int tlbIndex; |
| Addr vpn; |
| if (pageGrain.esp == 1 && config3.sp ==1) { |
| vpn = EntryHi >> 11; |
| } else { |
| // Mask off lower 2 bits |
| vpn = ((EntryHi >> 11) & 0xFFFFFFFC); |
| } |
| tlbIndex = dynamic_cast<MipsISA::TLB *>( |
| xc->tcBase()->getITBPtr())-> |
| probeEntry(vpn, entryHi.asid); |
| // Check TLB for entry matching EntryHi |
| if (tlbIndex != -1) { |
| Index = tlbIndex; |
| } else { |
| // else, set Index = 1 << 31 |
| Index = (1 << 31); |
| } |
| }}); |
| } |
| format CP0Unimpl { |
| 0x20: wait(); |
| } |
| default: CP0Unimpl::unknown(); |
| } |
| } |
| |
| //Table A-13 MIPS32 COP1 Encoding of rs Field |
| 0x1: decode RS_MSB { |
| 0x0: decode RS_HI { |
| 0x0: decode RS_LO { |
| format CP1Control { |
| 0x0: mfc1 ({{ Rt_uw = Fs_uw; }}); |
| |
| 0x2: cfc1({{ |
| switch (FS) { |
| case 0: |
| Rt = FIR; |
| break; |
| case 25: |
| Rt = (FCSR & 0xFE000000) >> 24 | |
| (FCSR & 0x00800000) >> 23; |
| break; |
| case 26: |
| Rt = (FCSR & 0x0003F07C); |
| break; |
| case 28: |
| Rt = (FCSR & 0x00000F80) | |
| (FCSR & 0x01000000) >> 21 | |
| (FCSR & 0x00000003); |
| break; |
| case 31: |
| Rt = FCSR; |
| break; |
| default: |
| warn("FP Control Value (%d) Not Valid"); |
| } |
| }}); |
| |
| 0x3: mfhc1({{ Rt_uw = Fs_ud<63:32>; }}); |
| |
| 0x4: mtc1({{ Fs_uw = Rt_uw; }}); |
| |
| 0x6: ctc1({{ |
| switch (FS) { |
| case 25: |
| FCSR = (Rt_uw<7:1> << 25) | // move 31-25 |
| (FCSR & 0x01000000) | // bit 24 |
| (FCSR & 0x004FFFFF); // bit 22-0 |
| break; |
| case 26: |
| FCSR = (FCSR & 0xFFFC0000) | // move 31-18 |
| Rt_uw<17:12> << 12 | // bit 17-12 |
| (FCSR & 0x00000F80) << 7 | // bit 11-7 |
| Rt_uw<6:2> << 2 | // bit 6-2 |
| (FCSR & 0x00000002); // bit 1-0 |
| break; |
| case 28: |
| FCSR = (FCSR & 0xFE000000) | // move 31-25 |
| Rt_uw<2:2> << 24 | // bit 24 |
| (FCSR & 0x00FFF000) << 23 | // bit 23-12 |
| Rt_uw<11:7> << 7 | // bit 24 |
| (FCSR & 0x000007E) | |
| Rt_uw<1:0>; // bit 22-0 |
| break; |
| case 31: |
| FCSR = Rt_uw; |
| break; |
| |
| default: |
| panic("FP Control Value (%d) " |
| "Not Available. Ignoring Access " |
| "to Floating Control Status " |
| "Register", FS); |
| } |
| }}); |
| |
| 0x7: mthc1({{ |
| uint64_t fs_hi = Rt_uw; |
| uint64_t fs_lo = Fs_ud & 0x0FFFFFFFF; |
| Fs_ud = (fs_hi << 32) | fs_lo; |
| }}); |
| |
| } |
| format CP1Unimpl { |
| 0x1: dmfc1(); |
| 0x5: dmtc1(); |
| } |
| } |
| |
| 0x1: decode RS_LO { |
| 0x0: decode ND { |
| format Branch { |
| 0x0: decode TF { |
| 0x0: bc1f({{ |
| cond = getCondCode(FCSR, BRANCH_CC) == 0; |
| }}); |
| 0x1: bc1t({{ |
| cond = getCondCode(FCSR, BRANCH_CC) == 1; |
| }}); |
| } |
| 0x1: decode TF { |
| 0x0: bc1fl({{ |
| cond = getCondCode(FCSR, BRANCH_CC) == 0; |
| }}, Likely); |
| 0x1: bc1tl({{ |
| cond = getCondCode(FCSR, BRANCH_CC) == 1; |
| }}, Likely); |
| } |
| } |
| } |
| format CP1Unimpl { |
| 0x1: bc1any2(); |
| 0x2: bc1any4(); |
| default: unknown(); |
| } |
| } |
| } |
| |
| 0x1: decode RS_HI { |
| 0x2: decode RS_LO { |
| //Table A-14 MIPS32 COP1 Encoding of Function Field When |
| //rs=S (( single-precision floating point)) |
| 0x0: decode FUNCTION_HI { |
| 0x0: decode FUNCTION_LO { |
| format FloatOp { |
| 0x0: add_s({{ Fd_sf = Fs_sf + Ft_sf; }}); |
| 0x1: sub_s({{ Fd_sf = Fs_sf - Ft_sf; }}); |
| 0x2: mul_s({{ Fd_sf = Fs_sf * Ft_sf; }}); |
| 0x3: div_s({{ Fd_sf = Fs_sf / Ft_sf; }}); |
| 0x4: sqrt_s({{ Fd_sf = sqrt(Fs_sf); }}); |
| 0x5: abs_s({{ Fd_sf = fabs(Fs_sf); }}); |
| 0x7: neg_s({{ Fd_sf = -Fs_sf; }}); |
| } |
| 0x6: BasicOp::mov_s({{ Fd_sf = Fs_sf; }}); |
| } |
| 0x1: decode FUNCTION_LO { |
| format FloatConvertOp { |
| 0x0: round_l_s({{ val = Fs_sf; }}, |
| ToLong, Round); |
| 0x1: trunc_l_s({{ val = Fs_sf; }}, |
| ToLong, Trunc); |
| 0x2: ceil_l_s({{ val = Fs_sf;}}, |
| ToLong, Ceil); |
| 0x3: floor_l_s({{ val = Fs_sf; }}, |
| ToLong, Floor); |
| 0x4: round_w_s({{ val = Fs_sf; }}, |
| ToWord, Round); |
| 0x5: trunc_w_s({{ val = Fs_sf; }}, |
| ToWord, Trunc); |
| 0x6: ceil_w_s({{ val = Fs_sf; }}, |
| ToWord, Ceil); |
| 0x7: floor_w_s({{ val = Fs_sf; }}, |
| ToWord, Floor); |
| } |
| } |
| |
| 0x2: decode FUNCTION_LO { |
| 0x1: decode MOVCF { |
| format BasicOp { |
| 0x0: movf_s({{ |
| Fd = (getCondCode(FCSR,CC) == 0) ? |
| Fs : Fd; |
| }}); |
| 0x1: movt_s({{ |
| Fd = (getCondCode(FCSR,CC) == 1) ? |
| Fs : Fd; |
| }}); |
| } |
| } |
| |
| format BasicOp { |
| 0x2: movz_s({{ Fd = (Rt == 0) ? Fs : Fd; }}); |
| 0x3: movn_s({{ Fd = (Rt != 0) ? Fs : Fd; }}); |
| } |
| |
| format FloatOp { |
| 0x5: recip_s({{ Fd = 1 / Fs; }}); |
| 0x6: rsqrt_s({{ Fd = 1 / sqrt(Fs); }}); |
| } |
| format CP1Unimpl { |
| default: unknown(); |
| } |
| } |
| 0x3: CP1Unimpl::unknown(); |
| |
| 0x4: decode FUNCTION_LO { |
| format FloatConvertOp { |
| 0x1: cvt_d_s({{ val = Fs_sf; }}, ToDouble); |
| 0x4: cvt_w_s({{ val = Fs_sf; }}, ToWord); |
| 0x5: cvt_l_s({{ val = Fs_sf; }}, ToLong); |
| } |
| |
| 0x6: FloatOp::cvt_ps_s({{ |
| Fd_ud = (uint64_t) Fs_uw << 32 | |
| (uint64_t) Ft_uw; |
| }}); |
| format CP1Unimpl { |
| default: unknown(); |
| } |
| } |
| 0x5: CP1Unimpl::unknown(); |
| |
| 0x6: decode FUNCTION_LO { |
| format FloatCompareOp { |
| 0x0: c_f_s({{ cond = 0; }}, |
| SinglePrecision, UnorderedFalse); |
| 0x1: c_un_s({{ cond = 0; }}, |
| SinglePrecision, UnorderedTrue); |
| 0x2: c_eq_s({{ cond = (Fs_sf == Ft_sf); }}, |
| UnorderedFalse); |
| 0x3: c_ueq_s({{ cond = (Fs_sf == Ft_sf); }}, |
| UnorderedTrue); |
| 0x4: c_olt_s({{ cond = (Fs_sf < Ft_sf); }}, |
| UnorderedFalse); |
| 0x5: c_ult_s({{ cond = (Fs_sf < Ft_sf); }}, |
| UnorderedTrue); |
| 0x6: c_ole_s({{ cond = (Fs_sf <= Ft_sf); }}, |
| UnorderedFalse); |
| 0x7: c_ule_s({{ cond = (Fs_sf <= Ft_sf); }}, |
| UnorderedTrue); |
| } |
| } |
| |
| 0x7: decode FUNCTION_LO { |
| format FloatCompareOp { |
| 0x0: c_sf_s({{ cond = 0; }}, SinglePrecision, |
| UnorderedFalse, QnanException); |
| 0x1: c_ngle_s({{ cond = 0; }}, SinglePrecision, |
| UnorderedTrue, QnanException); |
| 0x2: c_seq_s({{ cond = (Fs_sf == Ft_sf); }}, |
| UnorderedFalse, QnanException); |
| 0x3: c_ngl_s({{ cond = (Fs_sf == Ft_sf); }}, |
| UnorderedTrue, QnanException); |
| 0x4: c_lt_s({{ cond = (Fs_sf < Ft_sf); }}, |
| UnorderedFalse, QnanException); |
| 0x5: c_nge_s({{ cond = (Fs_sf < Ft_sf); }}, |
| UnorderedTrue, QnanException); |
| 0x6: c_le_s({{ cond = (Fs_sf <= Ft_sf); }}, |
| UnorderedFalse, QnanException); |
| 0x7: c_ngt_s({{ cond = (Fs_sf <= Ft_sf); }}, |
| UnorderedTrue, QnanException); |
| } |
| } |
| } |
| |
| //Table A-15 MIPS32 COP1 Encoding of Function Field When |
| //rs=D |
| 0x1: decode FUNCTION_HI { |
| 0x0: decode FUNCTION_LO { |
| format FloatOp { |
| 0x0: add_d({{ Fd_df = Fs_df + Ft_df; }}); |
| 0x1: sub_d({{ Fd_df = Fs_df - Ft_df; }}); |
| 0x2: mul_d({{ Fd_df = Fs_df * Ft_df; }}); |
| 0x3: div_d({{ Fd_df = Fs_df / Ft_df; }}); |
| 0x4: sqrt_d({{ Fd_df = sqrt(Fs_df); }}); |
| 0x5: abs_d({{ Fd_df = fabs(Fs_df); }}); |
| 0x7: neg_d({{ Fd_df = -1 * Fs_df; }}); |
| } |
| 0x6: BasicOp::mov_d({{ Fd_df = Fs_df; }}); |
| } |
| |
| 0x1: decode FUNCTION_LO { |
| format FloatConvertOp { |
| 0x0: round_l_d({{ val = Fs_df; }}, |
| ToLong, Round); |
| 0x1: trunc_l_d({{ val = Fs_df; }}, |
| ToLong, Trunc); |
| 0x2: ceil_l_d({{ val = Fs_df; }}, |
| ToLong, Ceil); |
| 0x3: floor_l_d({{ val = Fs_df; }}, |
| ToLong, Floor); |
| 0x4: round_w_d({{ val = Fs_df; }}, |
| ToWord, Round); |
| 0x5: trunc_w_d({{ val = Fs_df; }}, |
| ToWord, Trunc); |
| 0x6: ceil_w_d({{ val = Fs_df; }}, |
| ToWord, Ceil); |
| 0x7: floor_w_d({{ val = Fs_df; }}, |
| ToWord, Floor); |
| } |
| } |
| |
| 0x2: decode FUNCTION_LO { |
| 0x1: decode MOVCF { |
| format BasicOp { |
| 0x0: movf_d({{ |
| Fd_df = (getCondCode(FCSR,CC) == 0) ? |
| Fs_df : Fd_df; |
| }}); |
| 0x1: movt_d({{ |
| Fd_df = (getCondCode(FCSR,CC) == 1) ? |
| Fs_df : Fd_df; |
| }}); |
| } |
| } |
| |
| format BasicOp { |
| 0x2: movz_d({{ |
| Fd_df = (Rt == 0) ? Fs_df : Fd_df; |
| }}); |
| 0x3: movn_d({{ |
| Fd_df = (Rt != 0) ? Fs_df : Fd_df; |
| }}); |
| } |
| |
| format FloatOp { |
| 0x5: recip_d({{ Fd_df = 1 / Fs_df; }}); |
| 0x6: rsqrt_d({{ Fd_df = 1 / sqrt(Fs_df); }}); |
| } |
| format CP1Unimpl { |
| default: unknown(); |
| } |
| |
| } |
| 0x4: decode FUNCTION_LO { |
| format FloatConvertOp { |
| 0x0: cvt_s_d({{ val = Fs_df; }}, ToSingle); |
| 0x4: cvt_w_d({{ val = Fs_df; }}, ToWord); |
| 0x5: cvt_l_d({{ val = Fs_df; }}, ToLong); |
| } |
| default: CP1Unimpl::unknown(); |
| } |
| |
| 0x6: decode FUNCTION_LO { |
| format FloatCompareOp { |
| 0x0: c_f_d({{ cond = 0; }}, |
| DoublePrecision, UnorderedFalse); |
| 0x1: c_un_d({{ cond = 0; }}, |
| DoublePrecision, UnorderedTrue); |
| 0x2: c_eq_d({{ cond = (Fs_df == Ft_df); }}, |
| UnorderedFalse); |
| 0x3: c_ueq_d({{ cond = (Fs_df == Ft_df); }}, |
| UnorderedTrue); |
| 0x4: c_olt_d({{ cond = (Fs_df < Ft_df); }}, |
| UnorderedFalse); |
| 0x5: c_ult_d({{ cond = (Fs_df < Ft_df); }}, |
| UnorderedTrue); |
| 0x6: c_ole_d({{ cond = (Fs_df <= Ft_df); }}, |
| UnorderedFalse); |
| 0x7: c_ule_d({{ cond = (Fs_df <= Ft_df); }}, |
| UnorderedTrue); |
| } |
| } |
| |
| 0x7: decode FUNCTION_LO { |
| format FloatCompareOp { |
| 0x0: c_sf_d({{ cond = 0; }}, DoublePrecision, |
| UnorderedFalse, QnanException); |
| 0x1: c_ngle_d({{ cond = 0; }}, DoublePrecision, |
| UnorderedTrue, QnanException); |
| 0x2: c_seq_d({{ cond = (Fs_df == Ft_df); }}, |
| UnorderedFalse, QnanException); |
| 0x3: c_ngl_d({{ cond = (Fs_df == Ft_df); }}, |
| UnorderedTrue, QnanException); |
| 0x4: c_lt_d({{ cond = (Fs_df < Ft_df); }}, |
| UnorderedFalse, QnanException); |
| 0x5: c_nge_d({{ cond = (Fs_df < Ft_df); }}, |
| UnorderedTrue, QnanException); |
| 0x6: c_le_d({{ cond = (Fs_df <= Ft_df); }}, |
| UnorderedFalse, QnanException); |
| 0x7: c_ngt_d({{ cond = (Fs_df <= Ft_df); }}, |
| UnorderedTrue, QnanException); |
| } |
| } |
| default: CP1Unimpl::unknown(); |
| } |
| 0x2: CP1Unimpl::unknown(); |
| 0x3: CP1Unimpl::unknown(); |
| 0x7: CP1Unimpl::unknown(); |
| |
| //Table A-16 MIPS32 COP1 Encoding of Function |
| //Field When rs=W |
| 0x4: decode FUNCTION { |
| format FloatConvertOp { |
| 0x20: cvt_s_w({{ val = Fs_sw; }}, ToSingle); |
| 0x21: cvt_d_w({{ val = Fs_sw; }}, ToDouble); |
| 0x26: CP1Unimpl::cvt_ps_w(); |
| } |
| default: CP1Unimpl::unknown(); |
| } |
| |
| //Table A-16 MIPS32 COP1 Encoding of Function Field |
| //When rs=L1 |
| //Note: "1. Format type L is legal only if 64-bit |
| //floating point operations are enabled." |
| 0x5: decode FUNCTION { |
| format FloatConvertOp { |
| 0x20: cvt_s_l({{ val = Fs_sd; }}, ToSingle); |
| 0x21: cvt_d_l({{ val = Fs_sd; }}, ToDouble); |
| 0x26: CP1Unimpl::cvt_ps_l(); |
| } |
| default: CP1Unimpl::unknown(); |
| } |
| |
| //Table A-17 MIPS64 COP1 Encoding of Function Field |
| //When rs=PS1 |
| //Note: "1. Format type PS is legal only if 64-bit |
| //floating point operations are enabled. " |
| 0x6: decode FUNCTION_HI { |
| 0x0: decode FUNCTION_LO { |
| format Float64Op { |
| 0x0: add_ps({{ |
| Fd1_sf = Fs1_sf + Ft2_sf; |
| Fd2_sf = Fs2_sf + Ft2_sf; |
| }}); |
| 0x1: sub_ps({{ |
| Fd1_sf = Fs1_sf - Ft2_sf; |
| Fd2_sf = Fs2_sf - Ft2_sf; |
| }}); |
| 0x2: mul_ps({{ |
| Fd1_sf = Fs1_sf * Ft2_sf; |
| Fd2_sf = Fs2_sf * Ft2_sf; |
| }}); |
| 0x5: abs_ps({{ |
| Fd1_sf = fabs(Fs1_sf); |
| Fd2_sf = fabs(Fs2_sf); |
| }}); |
| 0x6: mov_ps({{ |
| Fd1_sf = Fs1_sf; |
| Fd2_sf = Fs2_sf; |
| }}); |
| 0x7: neg_ps({{ |
| Fd1_sf = -(Fs1_sf); |
| Fd2_sf = -(Fs2_sf); |
| }}); |
| default: CP1Unimpl::unknown(); |
| } |
| } |
| 0x1: CP1Unimpl::unknown(); |
| 0x2: decode FUNCTION_LO { |
| 0x1: decode MOVCF { |
| format Float64Op { |
| 0x0: movf_ps({{ |
| Fd1 = (getCondCode(FCSR, CC) == 0) ? |
| Fs1 : Fd1; |
| Fd2 = (getCondCode(FCSR, CC+1) == 0) ? |
| Fs2 : Fd2; |
| }}); |
| 0x1: movt_ps({{ |
| Fd2 = (getCondCode(FCSR, CC) == 1) ? |
| Fs1 : Fd1; |
| Fd2 = (getCondCode(FCSR, CC+1) == 1) ? |
| Fs2 : Fd2; |
| }}); |
| } |
| } |
| |
| format Float64Op { |
| 0x2: movz_ps({{ |
| Fd1 = (getCondCode(FCSR, CC) == 0) ? |
| Fs1 : Fd1; |
| Fd2 = (getCondCode(FCSR, CC) == 0) ? |
| Fs2 : Fd2; |
| }}); |
| 0x3: movn_ps({{ |
| Fd1 = (getCondCode(FCSR, CC) == 1) ? |
| Fs1 : Fd1; |
| Fd2 = (getCondCode(FCSR, CC) == 1) ? |
| Fs2 : Fd2; |
| }}); |
| } |
| default: CP1Unimpl::unknown(); |
| } |
| 0x3: CP1Unimpl::unknown(); |
| 0x4: decode FUNCTION_LO { |
| 0x0: FloatOp::cvt_s_pu({{ Fd_sf = Fs2_sf; }}); |
| default: CP1Unimpl::unknown(); |
| } |
| |
| 0x5: decode FUNCTION_LO { |
| 0x0: FloatOp::cvt_s_pl({{ Fd_sf = Fs1_sf; }}); |
| format Float64Op { |
| 0x4: pll({{ |
| Fd_ud = (uint64_t)Fs1_uw << 32 | Ft1_uw; |
| }}); |
| 0x5: plu({{ |
| Fd_ud = (uint64_t)Fs1_uw << 32 | Ft2_uw; |
| }}); |
| 0x6: pul({{ |
| Fd_ud = (uint64_t)Fs2_uw << 32 | Ft1_uw; |
| }}); |
| 0x7: puu({{ |
| Fd_ud = (uint64_t)Fs2_uw << 32 | Ft2_uw; |
| }}); |
| } |
| default: CP1Unimpl::unknown(); |
| } |
| |
| 0x6: decode FUNCTION_LO { |
| format FloatPSCompareOp { |
| 0x0: c_f_ps({{ cond1 = 0; }}, {{ cond2 = 0; }}, |
| UnorderedFalse); |
| 0x1: c_un_ps({{ cond1 = 0; }}, {{ cond2 = 0; }}, |
| UnorderedTrue); |
| 0x2: c_eq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf == Ft2_sf); }}, |
| UnorderedFalse); |
| 0x3: c_ueq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf == Ft2_sf); }}, |
| UnorderedTrue); |
| 0x4: c_olt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf < Ft2_sf); }}, |
| UnorderedFalse); |
| 0x5: c_ult_ps({{ cond1 = (Fs_sf < Ft_sf); }}, |
| {{ cond2 = (Fs2_sf < Ft2_sf); }}, |
| UnorderedTrue); |
| 0x6: c_ole_ps({{ cond1 = (Fs_sf <= Ft_sf); }}, |
| {{ cond2 = (Fs2_sf <= Ft2_sf); }}, |
| UnorderedFalse); |
| 0x7: c_ule_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf <= Ft2_sf); }}, |
| UnorderedTrue); |
| } |
| } |
| |
| 0x7: decode FUNCTION_LO { |
| format FloatPSCompareOp { |
| 0x0: c_sf_ps({{ cond1 = 0; }}, {{ cond2 = 0; }}, |
| UnorderedFalse, QnanException); |
| 0x1: c_ngle_ps({{ cond1 = 0; }}, |
| {{ cond2 = 0; }}, |
| UnorderedTrue, QnanException); |
| 0x2: c_seq_ps({{ cond1 = (Fs1_sf == Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf == Ft2_sf); }}, |
| UnorderedFalse, QnanException); |
| 0x3: c_ngl_ps({{ cond1 = (Fs1_sf == Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf == Ft2_sf); }}, |
| UnorderedTrue, QnanException); |
| 0x4: c_lt_ps({{ cond1 = (Fs1_sf < Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf < Ft2_sf); }}, |
| UnorderedFalse, QnanException); |
| 0x5: c_nge_ps({{ cond1 = (Fs1_sf < Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf < Ft2_sf); }}, |
| UnorderedTrue, QnanException); |
| 0x6: c_le_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf <= Ft2_sf); }}, |
| UnorderedFalse, QnanException); |
| 0x7: c_ngt_ps({{ cond1 = (Fs1_sf <= Ft1_sf); }}, |
| {{ cond2 = (Fs2_sf <= Ft2_sf); }}, |
| UnorderedTrue, QnanException); |
| } |
| } |
| } |
| } |
| default: CP1Unimpl::unknown(); |
| } |
| } |
| |
| //Table A-19 MIPS32 COP2 Encoding of rs Field |
| 0x2: decode RS_MSB { |
| format CP2Unimpl { |
| 0x0: decode RS_HI { |
| 0x0: decode RS_LO { |
| 0x0: mfc2(); |
| 0x2: cfc2(); |
| 0x3: mfhc2(); |
| 0x4: mtc2(); |
| 0x6: ctc2(); |
| 0x7: mftc2(); |
| default: unknown(); |
| } |
| |
| 0x1: decode ND { |
| 0x0: decode TF { |
| 0x0: bc2f(); |
| 0x1: bc2t(); |
| default: unknown(); |
| } |
| |
| 0x1: decode TF { |
| 0x0: bc2fl(); |
| 0x1: bc2tl(); |
| default: unknown(); |
| } |
| default: unknown(); |
| |
| } |
| default: unknown(); |
| } |
| default: unknown(); |
| } |
| } |
| |
| //Table A-20 MIPS64 COP1X Encoding of Function Field 1 |
| //Note: "COP1X instructions are legal only if 64-bit floating point |
| //operations are enabled." |
| 0x3: decode FUNCTION_HI { |
| 0x0: decode FUNCTION_LO { |
| format LoadIndexedMemory { |
| 0x0: lwxc1({{ Fd_uw = Mem_uw; }}); |
| 0x1: ldxc1({{ Fd_ud = Mem_ud; }}); |
| 0x5: luxc1({{ Fd_ud = Mem_ud; }}, |
| {{ EA = (Rs + Rt) & ~7; }}); |
| } |
| } |
| |
| 0x1: decode FUNCTION_LO { |
| format StoreIndexedMemory { |
| 0x0: swxc1({{ Mem_uw = Fs_uw; }}); |
| 0x1: sdxc1({{ Mem_ud = Fs_ud; }}); |
| 0x5: suxc1({{ Mem_ud = Fs_ud; }}, |
| {{ EA = (Rs + Rt) & ~7; }}); |
| } |
| 0x7: Prefetch::prefx({{ EA = Rs + Rt; }}); |
| } |
| |
| 0x3: decode FUNCTION_LO { |
| 0x6: Float64Op::alnv_ps({{ |
| if (Rs<2:0> == 0) { |
| Fd_ud = Fs_ud; |
| } else if (Rs<2:0> == 4) { |
| if (GuestByteOrder == BigEndianByteOrder) |
| Fd_ud = Fs_ud<31:0> << 32 | Ft_ud<63:32>; |
| else |
| Fd_ud = Ft_ud<31:0> << 32 | Fs_ud<63:32>; |
| } else { |
| Fd_ud = Fd_ud; |
| } |
| }}); |
| } |
| |
| format FloatAccOp { |
| 0x4: decode FUNCTION_LO { |
| 0x0: madd_s({{ Fd_sf = (Fs_sf * Ft_sf) + Fr_sf; }}); |
| 0x1: madd_d({{ Fd_df = (Fs_df * Ft_df) + Fr_df; }}); |
| 0x6: madd_ps({{ |
| Fd1_sf = (Fs1_df * Ft1_df) + Fr1_df; |
| Fd2_sf = (Fs2_df * Ft2_df) + Fr2_df; |
| }}); |
| } |
| |
| 0x5: decode FUNCTION_LO { |
| 0x0: msub_s({{ Fd_sf = (Fs_sf * Ft_sf) - Fr_sf; }}); |
| 0x1: msub_d({{ Fd_df = (Fs_df * Ft_df) - Fr_df; }}); |
| 0x6: msub_ps({{ |
| Fd1_sf = (Fs1_df * Ft1_df) - Fr1_df; |
| Fd2_sf = (Fs2_df * Ft2_df) - Fr2_df; |
| }}); |
| } |
| |
| 0x6: decode FUNCTION_LO { |
| 0x0: nmadd_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) - Fr_sf; }}); |
| 0x1: nmadd_d({{ Fd_df = (-1 * Fs_df * Ft_df) - Fr_df; }}); |
| 0x6: nmadd_ps({{ |
| Fd1_sf = -((Fs1_df * Ft1_df) + Fr1_df); |
| Fd2_sf = -((Fs2_df * Ft2_df) + Fr2_df); |
| }}); |
| } |
| |
| 0x7: decode FUNCTION_LO { |
| 0x0: nmsub_s({{ Fd_sf = (-1 * Fs_sf * Ft_sf) + Fr_sf; }}); |
| 0x1: nmsub_d({{ Fd_df = (-1 * Fs_df * Ft_df) + Fr_df; }}); |
| 0x6: nmsub_ps({{ |
| Fd1_sf = -((Fs1_df * Ft1_df) - Fr1_df); |
| Fd2_sf = -((Fs2_df * Ft2_df) - Fr2_df); |
| }}); |
| } |
| } |
| } |
| |
| format Branch { |
| 0x4: beql({{ cond = (Rs_sw == Rt_sw); }}, Likely); |
| 0x5: bnel({{ cond = (Rs_sw != Rt_sw); }}, Likely); |
| 0x6: blezl({{ cond = (Rs_sw <= 0); }}, Likely); |
| 0x7: bgtzl({{ cond = (Rs_sw > 0); }}, Likely); |
| } |
| } |
| |
| 0x3: decode OPCODE_LO { |
| //Table A-5 MIPS32 SPECIAL2 Encoding of Function Field |
| 0x4: decode FUNCTION_HI { |
| 0x0: decode FUNCTION_LO { |
| 0x2: IntOp::mul({{ |
| int64_t temp1 = Rs_sd * Rt_sd; |
| Rd_sw = temp1<31:0>; |
| }}, IntMultOp); |
| |
| format HiLoRdSelValOp { |
| 0x0: madd({{ |
| val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) + |
| (Rs_sd * Rt_sd); |
| }}, IntMultOp); |
| 0x1: maddu({{ |
| val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) + |
| (Rs_ud * Rt_ud); |
| }}, IntMultOp); |
| 0x4: msub({{ |
| val = ((int64_t)HI_RD_SEL << 32 | LO_RD_SEL) - |
| (Rs_sd * Rt_sd); |
| }}, IntMultOp); |
| 0x5: msubu({{ |
| val = ((uint64_t)HI_RD_SEL << 32 | LO_RD_SEL) - |
| (Rs_ud * Rt_ud); |
| }}, IntMultOp); |
| } |
| } |
| |
| 0x4: decode FUNCTION_LO { |
| format BasicOp { |
| 0x0: clz({{ |
| int cnt = 32; |
| for (int idx = 31; idx >= 0; idx--) { |
| if (Rs<idx:idx> == 1) { |
| cnt = 31 - idx; |
| break; |
| } |
| } |
| Rd_uw = cnt; |
| }}); |
| 0x1: clo({{ |
| int cnt = 32; |
| for (int idx = 31; idx >= 0; idx--) { |
| if (Rs<idx:idx> == 0) { |
| cnt = 31 - idx; |
| break; |
| } |
| } |
| Rd_uw = cnt; |
| }}); |
| } |
| } |
| |
| 0x7: decode FUNCTION_LO { |
| 0x7: FailUnimpl::sdbbp(); |
| } |
| } |
| |
| //Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2 |
| //of the Architecture |
| 0x7: decode FUNCTION_HI { |
| 0x0: decode FUNCTION_LO { |
| format BasicOp { |
| 0x0: ext({{ Rt_uw = bits(Rs_uw, MSB+LSB, LSB); }}); |
| 0x4: ins({{ |
| Rt_uw = bits(Rt_uw, 31, MSB+1) << (MSB+1) | |
| bits(Rs_uw, MSB-LSB, 0) << LSB | |
| bits(Rt_uw, LSB-1, 0); |
| }}); |
| } |
| } |
| |
| 0x1: decode FUNCTION_LO { |
| format MT_Control { |
| 0x0: fork({{ |
| forkThread(xc->tcBase(), fault, RD, Rs, Rt); |
| }}, UserMode); |
| 0x1: yield({{ |
| Rd_sw = yieldThread(xc->tcBase(), fault, Rs_sw, |
| YQMask); |
| }}, UserMode); |
| } |
| |
| //Table 5-9 MIPS32 LX Encoding of the op Field (DSP ASE MANUAL) |
| 0x2: decode OP_HI { |
| 0x0: decode OP_LO { |
| format LoadIndexedMemory { |
| 0x0: lwx({{ Rd_sw = Mem_sw; }}); |
| 0x4: lhx({{ Rd_sw = Mem_sh; }}); |
| 0x6: lbux({{ Rd_uw = Mem_ub; }}); |
| } |
| } |
| } |
| 0x4: DspIntOp::insv({{ |
| int pos = dspctl<5:0>; |
| int size = dspctl<12:7> - 1; |
| Rt_uw = insertBits(Rt_uw, pos+size, |
| pos, Rs_uw<size:0>); |
| }}); |
| } |
| |
| 0x2: decode FUNCTION_LO { |
| |
| //Table 5-5 MIPS32 ADDU.QB Encoding of the op Field |
| //(DSP ASE MANUAL) |
| 0x0: decode OP_HI { |
| 0x0: decode OP_LO { |
| format DspIntOp { |
| 0x0: addu_qb({{ |
| Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| NOSATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x1: subu_qb({{ |
| Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| NOSATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x4: addu_s_qb({{ |
| Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| SATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x5: subu_s_qb({{ |
| Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| SATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x6: muleu_s_ph_qbl({{ |
| Rd_uw = dspMuleu(Rs_uw, Rt_uw, |
| MODE_L, &dspctl); |
| }}, IntMultOp); |
| 0x7: muleu_s_ph_qbr({{ |
| Rd_uw = dspMuleu(Rs_uw, Rt_uw, |
| MODE_R, &dspctl); |
| }}, IntMultOp); |
| } |
| } |
| 0x1: decode OP_LO { |
| format DspIntOp { |
| 0x0: addu_ph({{ |
| Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| NOSATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x1: subu_ph({{ |
| Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| NOSATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x2: addq_ph({{ |
| Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| NOSATURATE, SIGNED, &dspctl); |
| }}); |
| 0x3: subq_ph({{ |
| Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| NOSATURATE, SIGNED, &dspctl); |
| }}); |
| 0x4: addu_s_ph({{ |
| Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| SATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x5: subu_s_ph({{ |
| Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| SATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x6: addq_s_ph({{ |
| Rd_uw = dspAdd(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| 0x7: subq_s_ph({{ |
| Rd_uw = dspSub(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| } |
| } |
| 0x2: decode OP_LO { |
| format DspIntOp { |
| 0x0: addsc({{ |
| int64_t dresult; |
| dresult = Rs_ud + Rt_ud; |
| Rd_sw = dresult<31:0>; |
| dspctl = insertBits(dspctl, 13, 13, |
| dresult<32:32>); |
| }}); |
| 0x1: addwc({{ |
| int64_t dresult; |
| dresult = Rs_sd + Rt_sd + dspctl<13:13>; |
| Rd_sw = dresult<31:0>; |
| if (dresult<32:32> != dresult<31:31>) |
| dspctl = insertBits(dspctl, 20, 20, 1); |
| }}); |
| 0x2: modsub({{ |
| Rd_sw = (Rs_sw == 0) ? Rt_sw<23:8> : |
| Rs_sw - Rt_sw<7:0>; |
| }}); |
| 0x4: raddu_w_qb({{ |
| Rd_uw = Rs_uw<31:24> + Rs_uw<23:16> + |
| Rs_uw<15:8> + Rs_uw<7:0>; |
| }}); |
| 0x6: addq_s_w({{ |
| Rd_sw = dspAdd(Rs_sw, Rt_sw, SIMD_FMT_W, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| 0x7: subq_s_w({{ |
| Rd_sw = dspSub(Rs_sw, Rt_sw, SIMD_FMT_W, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| } |
| } |
| 0x3: decode OP_LO { |
| format DspIntOp { |
| 0x4: muleq_s_w_phl({{ |
| Rd_sw = dspMuleq(Rs_sw, Rt_sw, |
| MODE_L, &dspctl); |
| }}, IntMultOp); |
| 0x5: muleq_s_w_phr({{ |
| Rd_sw = dspMuleq(Rs_sw, Rt_sw, |
| MODE_R, &dspctl); |
| }}, IntMultOp); |
| 0x6: mulq_s_ph({{ |
| Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| SATURATE, NOROUND, &dspctl); |
| }}, IntMultOp); |
| 0x7: mulq_rs_ph({{ |
| Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| SATURATE, ROUND, &dspctl); |
| }}, IntMultOp); |
| } |
| } |
| } |
| |
| //Table 5-6 MIPS32 CMPU_EQ_QB Encoding of the op Field |
| //(DSP ASE MANUAL) |
| 0x1: decode OP_HI { |
| 0x0: decode OP_LO { |
| format DspIntOp { |
| 0x0: cmpu_eq_qb({{ |
| dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_EQ, &dspctl); |
| }}); |
| 0x1: cmpu_lt_qb({{ |
| dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_LT, &dspctl); |
| }}); |
| 0x2: cmpu_le_qb({{ |
| dspCmp(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_LE, &dspctl); |
| }}); |
| 0x3: pick_qb({{ |
| Rd_uw = dspPick(Rs_uw, Rt_uw, |
| SIMD_FMT_QB, &dspctl); |
| }}); |
| 0x4: cmpgu_eq_qb({{ |
| Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_EQ ); |
| }}); |
| 0x5: cmpgu_lt_qb({{ |
| Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_LT); |
| }}); |
| 0x6: cmpgu_le_qb({{ |
| Rd_uw = dspCmpg(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_LE); |
| }}); |
| } |
| } |
| 0x1: decode OP_LO { |
| format DspIntOp { |
| 0x0: cmp_eq_ph({{ |
| dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| SIGNED, CMP_EQ, &dspctl); |
| }}); |
| 0x1: cmp_lt_ph({{ |
| dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| SIGNED, CMP_LT, &dspctl); |
| }}); |
| 0x2: cmp_le_ph({{ |
| dspCmp(Rs_uw, Rt_uw, SIMD_FMT_PH, |
| SIGNED, CMP_LE, &dspctl); |
| }}); |
| 0x3: pick_ph({{ |
| Rd_uw = dspPick(Rs_uw, Rt_uw, |
| SIMD_FMT_PH, &dspctl); |
| }}); |
| 0x4: precrq_qb_ph({{ |
| Rd_uw = Rs_uw<31:24> << 24 | |
| Rs_uw<15:8> << 16 | |
| Rt_uw<31:24> << 8 | |
| Rt_uw<15:8>; |
| }}); |
| 0x5: precr_qb_ph({{ |
| Rd_uw = Rs_uw<23:16> << 24 | |
| Rs_uw<7:0> << 16 | |
| Rt_uw<23:16> << 8 | |
| Rt_uw<7:0>; |
| }}); |
| 0x6: packrl_ph({{ |
| Rd_uw = dspPack(Rs_uw, Rt_uw, SIMD_FMT_PH); |
| }}); |
| 0x7: precrqu_s_qb_ph({{ |
| Rd_uw = dspPrecrqu(Rs_uw, Rt_uw, &dspctl); |
| }}); |
| } |
| } |
| 0x2: decode OP_LO { |
| format DspIntOp { |
| 0x4: precrq_ph_w({{ |
| Rd_uw = Rs_uw<31:16> << 16 | Rt_uw<31:16>; |
| }}); |
| 0x5: precrq_rs_ph_w({{ |
| Rd_uw = dspPrecrq(Rs_uw, Rt_uw, |
| SIMD_FMT_W, &dspctl); |
| }}); |
| } |
| } |
| 0x3: decode OP_LO { |
| format DspIntOp { |
| 0x0: cmpgdu_eq_qb({{ |
| Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_EQ, &dspctl); |
| }}); |
| 0x1: cmpgdu_lt_qb({{ |
| Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_LT, &dspctl); |
| }}); |
| 0x2: cmpgdu_le_qb({{ |
| Rd_uw = dspCmpgd(Rs_uw, Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, CMP_LE, &dspctl); |
| }}); |
| 0x6: precr_sra_ph_w({{ |
| Rt_uw = dspPrecrSra(Rt_uw, Rs_uw, RD, |
| SIMD_FMT_W, NOROUND); |
| }}); |
| 0x7: precr_sra_r_ph_w({{ |
| Rt_uw = dspPrecrSra(Rt_uw, Rs_uw, RD, |
| SIMD_FMT_W, ROUND); |
| }}); |
| } |
| } |
| } |
| |
| //Table 5-7 MIPS32 ABSQ_S.PH Encoding of the op Field |
| //(DSP ASE MANUAL) |
| 0x2: decode OP_HI { |
| 0x0: decode OP_LO { |
| format DspIntOp { |
| 0x1: absq_s_qb({{ |
| Rd_sw = dspAbs(Rt_sw, SIMD_FMT_QB, &dspctl); |
| }}); |
| 0x2: repl_qb({{ |
| Rd_uw = RS_RT<7:0> << 24 | |
| RS_RT<7:0> << 16 | |
| RS_RT<7:0> << 8 | |
| RS_RT<7:0>; |
| }}); |
| 0x3: replv_qb({{ |
| Rd_sw = Rt_uw<7:0> << 24 | |
| Rt_uw<7:0> << 16 | |
| Rt_uw<7:0> << 8 | |
| Rt_uw<7:0>; |
| }}); |
| 0x4: precequ_ph_qbl({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED, |
| SIMD_FMT_PH, SIGNED, MODE_L); |
| }}); |
| 0x5: precequ_ph_qbr({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED, |
| SIMD_FMT_PH, SIGNED, MODE_R); |
| }}); |
| 0x6: precequ_ph_qbla({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED, |
| SIMD_FMT_PH, SIGNED, MODE_LA); |
| }}); |
| 0x7: precequ_ph_qbra({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, UNSIGNED, |
| SIMD_FMT_PH, SIGNED, MODE_RA); |
| }}); |
| } |
| } |
| 0x1: decode OP_LO { |
| format DspIntOp { |
| 0x1: absq_s_ph({{ |
| Rd_sw = dspAbs(Rt_sw, SIMD_FMT_PH, &dspctl); |
| }}); |
| 0x2: repl_ph({{ |
| Rd_uw = (sext<10>(RS_RT))<15:0> << 16 | |
| (sext<10>(RS_RT))<15:0>; |
| }}); |
| 0x3: replv_ph({{ |
| Rd_uw = Rt_uw<15:0> << 16 | |
| Rt_uw<15:0>; |
| }}); |
| 0x4: preceq_w_phl({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_PH, SIGNED, |
| SIMD_FMT_W, SIGNED, MODE_L); |
| }}); |
| 0x5: preceq_w_phr({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_PH, SIGNED, |
| SIMD_FMT_W, SIGNED, MODE_R); |
| }}); |
| } |
| } |
| 0x2: decode OP_LO { |
| format DspIntOp { |
| 0x1: absq_s_w({{ |
| Rd_sw = dspAbs(Rt_sw, SIMD_FMT_W, &dspctl); |
| }}); |
| } |
| } |
| 0x3: decode OP_LO { |
| 0x3: IntOp::bitrev({{ |
| Rd_uw = bitrev( Rt_uw<15:0> ); |
| }}); |
| format DspIntOp { |
| 0x4: preceu_ph_qbl({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, SIMD_FMT_PH, |
| UNSIGNED, MODE_L); |
| }}); |
| 0x5: preceu_ph_qbr({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, SIMD_FMT_PH, |
| UNSIGNED, MODE_R ); |
| }}); |
| 0x6: preceu_ph_qbla({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, SIMD_FMT_PH, |
| UNSIGNED, MODE_LA ); |
| }}); |
| 0x7: preceu_ph_qbra({{ |
| Rd_uw = dspPrece(Rt_uw, SIMD_FMT_QB, |
| UNSIGNED, SIMD_FMT_PH, |
| UNSIGNED, MODE_RA); |
| }}); |
| } |
| } |
| } |
| |
| //Table 5-8 MIPS32 SHLL.QB Encoding of the op Field |
| //(DSP ASE MANUAL) |
| 0x3: decode OP_HI { |
| 0x0: decode OP_LO { |
| format DspIntOp { |
| 0x0: shll_qb({{ |
| Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_QB, |
| NOSATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x1: shrl_qb({{ |
| Rd_sw = dspShrl(Rt_sw, RS, SIMD_FMT_QB, |
| UNSIGNED); |
| }}); |
| 0x2: shllv_qb({{ |
| Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_QB, |
| NOSATURATE, UNSIGNED, &dspctl); |
| }}); |
| 0x3: shrlv_qb({{ |
| Rd_sw = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_QB, |
| UNSIGNED); |
| }}); |
| 0x4: shra_qb({{ |
| Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_QB, |
| NOROUND, SIGNED, &dspctl); |
| }}); |
| 0x5: shra_r_qb({{ |
| Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_QB, |
| ROUND, SIGNED, &dspctl); |
| }}); |
| 0x6: shrav_qb({{ |
| Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB, |
| NOROUND, SIGNED, &dspctl); |
| }}); |
| 0x7: shrav_r_qb({{ |
| Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_QB, |
| ROUND, SIGNED, &dspctl); |
| }}); |
| } |
| } |
| 0x1: decode OP_LO { |
| format DspIntOp { |
| 0x0: shll_ph({{ |
| Rd_uw = dspShll(Rt_uw, RS, SIMD_FMT_PH, |
| NOSATURATE, SIGNED, &dspctl); |
| }}); |
| 0x1: shra_ph({{ |
| Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_PH, |
| NOROUND, SIGNED, &dspctl); |
| }}); |
| 0x2: shllv_ph({{ |
| Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH, |
| NOSATURATE, SIGNED, &dspctl); |
| }}); |
| 0x3: shrav_ph({{ |
| Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH, |
| NOROUND, SIGNED, &dspctl); |
| }}); |
| 0x4: shll_s_ph({{ |
| Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_PH, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| 0x5: shra_r_ph({{ |
| Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_PH, |
| ROUND, SIGNED, &dspctl); |
| }}); |
| 0x6: shllv_s_ph({{ |
| Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_PH, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| 0x7: shrav_r_ph({{ |
| Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_PH, |
| ROUND, SIGNED, &dspctl); |
| }}); |
| } |
| } |
| 0x2: decode OP_LO { |
| format DspIntOp { |
| 0x4: shll_s_w({{ |
| Rd_sw = dspShll(Rt_sw, RS, SIMD_FMT_W, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| 0x5: shra_r_w({{ |
| Rd_sw = dspShra(Rt_sw, RS, SIMD_FMT_W, |
| ROUND, SIGNED, &dspctl); |
| }}); |
| 0x6: shllv_s_w({{ |
| Rd_sw = dspShll(Rt_sw, Rs_sw, SIMD_FMT_W, |
| SATURATE, SIGNED, &dspctl); |
| }}); |
| 0x7: shrav_r_w({{ |
| Rd_sw = dspShra(Rt_sw, Rs_sw, SIMD_FMT_W, |
| ROUND, SIGNED, &dspctl); |
| }}); |
| } |
| } |
| 0x3: decode OP_LO { |
| format DspIntOp { |
| 0x1: shrl_ph({{ |
| Rd_sw = dspShrl(Rt_sw, RS, SIMD_FMT_PH, |
| UNSIGNED); |
| }}); |
| 0x3: shrlv_ph({{ |
| Rd_sw = dspShrl(Rt_sw, Rs_sw, SIMD_FMT_PH, |
| UNSIGNED); |
| }}); |
| } |
| } |
| } |
| } |
| |
| 0x3: decode FUNCTION_LO { |
| |
| //Table 3.12 MIPS32 ADDUH.QB Encoding of the op Field |
| //(DSP ASE Rev2 Manual) |
| 0x0: decode OP_HI { |
| 0x0: decode OP_LO { |
| format DspIntOp { |
| 0x0: adduh_qb({{ |
| Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB, |
| NOROUND, UNSIGNED); |
| }}); |
| 0x1: subuh_qb({{ |
| Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB, |
| NOROUND, UNSIGNED); |
| }}); |
| 0x2: adduh_r_qb({{ |
| Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_QB, |
| ROUND, UNSIGNED); |
| }}); |
| 0x3: subuh_r_qb({{ |
| Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_QB, |
| ROUND, UNSIGNED); |
| }}); |
| } |
| } |
| 0x1: decode OP_LO { |
| format DspIntOp { |
| 0x0: addqh_ph({{ |
| Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| NOROUND, SIGNED); |
| }}); |
| 0x1: subqh_ph({{ |
| Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| NOROUND, SIGNED); |
| }}); |
| 0x2: addqh_r_ph({{ |
| Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| ROUND, SIGNED); |
| }}); |
| 0x3: subqh_r_ph({{ |
| Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| ROUND, SIGNED); |
| }}); |
| 0x4: mul_ph({{ |
| Rd_sw = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| NOSATURATE, &dspctl); |
| }}, IntMultOp); |
| 0x6: mul_s_ph({{ |
| Rd_sw = dspMul(Rs_sw, Rt_sw, SIMD_FMT_PH, |
| SATURATE, &dspctl); |
| }}, IntMultOp); |
| } |
| } |
| 0x2: decode OP_LO { |
| format DspIntOp { |
| 0x0: addqh_w({{ |
| Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W, |
| NOROUND, SIGNED); |
| }}); |
| 0x1: subqh_w({{ |
| Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W, |
| NOROUND, SIGNED); |
| }}); |
| 0x2: addqh_r_w({{ |
| Rd_uw = dspAddh(Rs_sw, Rt_sw, SIMD_FMT_W, |
| ROUND, SIGNED); |
| }}); |
| 0x3: subqh_r_w({{ |
| Rd_uw = dspSubh(Rs_sw, Rt_sw, SIMD_FMT_W, |
| ROUND, SIGNED); |
| }}); |
| 0x6: mulq_s_w({{ |
| Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W, |
| SATURATE, NOROUND, &dspctl); |
| }}, IntMultOp); |
| 0x7: mulq_rs_w({{ |
| Rd_sw = dspMulq(Rs_sw, Rt_sw, SIMD_FMT_W, |
| SATURATE, ROUND, &dspctl); |
| }}, IntMultOp); |
| } |
| } |
| } |
| } |
| |
| //Table A-10 MIPS32 BSHFL Encoding of sa Field |
| 0x4: decode SA { |
| format BasicOp { |
| 0x02: wsbh({{ |
| Rd_uw = Rt_uw<23:16> << 24 | |
| Rt_uw<31:24> << 16 | |
| Rt_uw<7:0> << 8 | |
| Rt_uw<15:8>; |
| }}); |
| 0x10: seb({{ Rd_sw = Rt_sb; }}); |
| 0x18: seh({{ Rd_sw = Rt_sh; }}); |
| } |
| } |
| |
| 0x6: decode FUNCTION_LO { |
| |
| //Table 5-10 MIPS32 DPAQ.W.PH Encoding of the op Field |
| //(DSP ASE MANUAL) |
| 0x0: decode OP_HI { |
| 0x0: decode OP_LO { |
| format DspHiLoOp { |
| 0x0: dpa_w_ph({{ |
| dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_PH, SIGNED, MODE_L); |
| }}, IntMultOp); |
| 0x1: dps_w_ph({{ |
| dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_PH, SIGNED, MODE_L); |
| }}, IntMultOp); |
| 0x2: mulsa_w_ph({{ |
| dspac = dspMulsa(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH ); |
| }}, IntMultOp); |
| 0x3: dpau_h_qbl({{ |
| dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_QB, UNSIGNED, MODE_L); |
| }}, IntMultOp); |
| 0x4: dpaq_s_w_ph({{ |
| dspac = dspDpaq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH, |
| SIMD_FMT_W, NOSATURATE, |
| MODE_L, &dspctl); |
| }}, IntMultOp); |
| 0x5: dpsq_s_w_ph({{ |
| dspac = dspDpsq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH, |
| SIMD_FMT_W, NOSATURATE, |
| MODE_L, &dspctl); |
| }}, IntMultOp); |
| 0x6: mulsaq_s_w_ph({{ |
| dspac = dspMulsaq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH, |
| &dspctl); |
| }}, IntMultOp); |
| 0x7: dpau_h_qbr({{ |
| dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_QB, UNSIGNED, MODE_R); |
| }}, IntMultOp); |
| } |
| } |
| 0x1: decode OP_LO { |
| format DspHiLoOp { |
| 0x0: dpax_w_ph({{ |
| dspac = dspDpa(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_PH, SIGNED, MODE_X); |
| }}, IntMultOp); |
| 0x1: dpsx_w_ph({{ |
| dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_PH, SIGNED, MODE_X); |
| }}, IntMultOp); |
| 0x3: dpsu_h_qbl({{ |
| dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_QB, UNSIGNED, MODE_L); |
| }}, IntMultOp); |
| 0x4: dpaq_sa_l_w({{ |
| dspac = dspDpaq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_W, |
| SIMD_FMT_L, SATURATE, |
| MODE_L, &dspctl); |
| }}, IntMultOp); |
| 0x5: dpsq_sa_l_w({{ |
| dspac = dspDpsq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_W, |
| SIMD_FMT_L, SATURATE, |
| MODE_L, &dspctl); |
| }}, IntMultOp); |
| 0x7: dpsu_h_qbr({{ |
| dspac = dspDps(dspac, Rs_sw, Rt_sw, ACDST, |
| SIMD_FMT_QB, UNSIGNED, MODE_R); |
| }}, IntMultOp); |
| } |
| } |
| 0x2: decode OP_LO { |
| format DspHiLoOp { |
| 0x0: maq_sa_w_phl({{ |
| dspac = dspMaq(dspac, Rs_uw, Rt_uw, |
| ACDST, SIMD_FMT_PH, |
| MODE_L, SATURATE, &dspctl); |
| }}, IntMultOp); |
| 0x2: maq_sa_w_phr({{ |
| dspac = dspMaq(dspac, Rs_uw, Rt_uw, |
| ACDST, SIMD_FMT_PH, |
| MODE_R, SATURATE, &dspctl); |
| }}, IntMultOp); |
| 0x4: maq_s_w_phl({{ |
| dspac = dspMaq(dspac, Rs_uw, Rt_uw, |
| ACDST, SIMD_FMT_PH, |
| MODE_L, NOSATURATE, &dspctl); |
| }}, IntMultOp); |
| 0x6: maq_s_w_phr({{ |
| dspac = dspMaq(dspac, Rs_uw, Rt_uw, |
| ACDST, SIMD_FMT_PH, |
| MODE_R, NOSATURATE, &dspctl); |
| }}, IntMultOp); |
| } |
| } |
| 0x3: decode OP_LO { |
| format DspHiLoOp { |
| 0x0: dpaqx_s_w_ph({{ |
| dspac = dspDpaq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH, |
| SIMD_FMT_W, NOSATURATE, |
| MODE_X, &dspctl); |
| }}, IntMultOp); |
| 0x1: dpsqx_s_w_ph({{ |
| dspac = dspDpsq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH, |
| SIMD_FMT_W, NOSATURATE, |
| MODE_X, &dspctl); |
| }}, IntMultOp); |
| 0x2: dpaqx_sa_w_ph({{ |
| dspac = dspDpaq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH, |
| SIMD_FMT_W, SATURATE, |
| MODE_X, &dspctl); |
| }}, IntMultOp); |
| 0x3: dpsqx_sa_w_ph({{ |
| dspac = dspDpsq(dspac, Rs_sw, Rt_sw, |
| ACDST, SIMD_FMT_PH, |
| SIMD_FMT_W, SATURATE, |
| MODE_X, &dspctl); |
| }}, IntMultOp); |
| } |
| } |
| } |
| |
| //Table 3.3 MIPS32 APPEND Encoding of the op Field |
| 0x1: decode OP_HI { |
| 0x0: decode OP_LO { |
| format IntOp { |
| 0x0: append({{ |
| Rt_uw = (Rt_uw << RD) | bits(Rs_uw, RD - 1, 0); |
| }}); |
| 0x1: prepend({{ |
| Rt_uw = (Rt_uw >> RD) | |
| (bits(Rs_uw, RD - 1, 0) << (32 - RD)); |
| }}); |
| } |
| } |
| 0x2: decode OP_LO { |
| format IntOp { |
| 0x0: balign({{ |
| Rt_uw = (Rt_uw << (8 * BP)) | |
| (Rs_uw >> (8 * (4 - BP))); |
| }}); |
| } |
| } |
| } |
| |
| } |
| 0x7: decode FUNCTION_LO { |
| |
| //Table 5-11 MIPS32 EXTR.W Encoding of the op Field |
| //(DSP ASE MANUAL) |
| 0x0: decode OP_HI { |
| 0x0: decode OP_LO { |
| format DspHiLoOp { |
| 0x0: extr_w({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS, |
| NOROUND, NOSATURATE, &dspctl); |
| }}); |
| 0x1: extrv_w({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw, |
| NOROUND, NOSATURATE, &dspctl); |
| }}); |
| 0x2: extp({{ |
| Rt_uw = dspExtp(dspac, RS, &dspctl); |
| }}); |
| 0x3: extpv({{ |
| Rt_uw = dspExtp(dspac, Rs_uw, &dspctl); |
| }}); |
| 0x4: extr_r_w({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS, |
| ROUND, NOSATURATE, &dspctl); |
| }}); |
| 0x5: extrv_r_w({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw, |
| ROUND, NOSATURATE, &dspctl); |
| }}); |
| 0x6: extr_rs_w({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_W, RS, |
| ROUND, SATURATE, &dspctl); |
| }}); |
| 0x7: extrv_rs_w({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_W, Rs_uw, |
| ROUND, SATURATE, &dspctl); |
| }}); |
| } |
| } |
| 0x1: decode OP_LO { |
| format DspHiLoOp { |
| 0x2: extpdp({{ |
| Rt_uw = dspExtpd(dspac, RS, &dspctl); |
| }}); |
| 0x3: extpdpv({{ |
| Rt_uw = dspExtpd(dspac, Rs_uw, &dspctl); |
| }}); |
| 0x6: extr_s_h({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_PH, RS, |
| NOROUND, SATURATE, &dspctl); |
| }}); |
| 0x7: extrv_s_h({{ |
| Rt_uw = dspExtr(dspac, SIMD_FMT_PH, Rs_uw, |
| NOROUND, SATURATE, &dspctl); |
| }}); |
| } |
| } |
| 0x2: decode OP_LO { |
| format DspIntOp { |
| 0x2: rddsp({{ |
| Rd_uw = readDSPControl(&dspctl, RDDSPMASK); |
| }}); |
| 0x3: wrdsp({{ |
| writeDSPControl(&dspctl, Rs_uw, WRDSPMASK); |
| }}); |
| } |
| } |
| 0x3: decode OP_LO { |
| format DspHiLoOp { |
| 0x2: shilo({{ |
| if ((int64_t)sext<6>(HILOSA) < 0) { |
| dspac = (uint64_t)dspac << |
| -sext<6>(HILOSA); |
| } else { |
| dspac = (uint64_t)dspac >> |
| sext<6>(HILOSA); |
| } |
| }}); |
| 0x3: shilov({{ |
| if ((int64_t)sext<6>(Rs_sw<5:0>) < 0) { |
| dspac = (uint64_t)dspac << |
| -sext<6>(Rs_sw<5:0>); |
| } else { |
| dspac = (uint64_t)dspac >> |
| sext<6>(Rs_sw<5:0>); |
| } |
| }}); |
| 0x7: mthlip({{ |
| dspac = dspac << 32; |
| dspac |= Rs_uw; |
| dspctl = insertBits(dspctl, 5, 0, |
| dspctl<5:0> + 32); |
| }}); |
| } |
| } |
| } |
| 0x3: decode OP default FailUnimpl::rdhwr() { |
| 0x0: decode FullSystemInt { |
| 0: decode RD { |
| 29: BasicOp::rdhwr_se({{ Rt = TpValue; }}); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| 0x4: decode OPCODE_LO { |
| format LoadMemory { |
| 0x0: lb({{ Rt_sw = Mem_sb; }}); |
| 0x1: lh({{ Rt_sw = Mem_sh; }}); |
| 0x3: lw({{ Rt_sw = Mem_sw; }}); |
| 0x4: lbu({{ Rt_uw = Mem_ub;}}); |
| 0x5: lhu({{ Rt_uw = Mem_uh; }}); |
| } |
| |
| format LoadUnalignedMemory { |
| 0x2: lwl({{ |
| uint32_t mem_shift = 24 - (8 * byte_offset); |
| Rt_uw = mem_word << mem_shift | (Rt_uw & mask(mem_shift)); |
| }}); |
| 0x6: lwr({{ |
| uint32_t mem_shift = 8 * byte_offset; |
| Rt_uw = (Rt_uw & (mask(mem_shift) << (32 - mem_shift))) | |
| (mem_word >> mem_shift); |
| }}); |
| } |
| } |
| |
| 0x5: decode OPCODE_LO { |
| format StoreMemory { |
| 0x0: sb({{ Mem_ub = Rt<7:0>; }}); |
| 0x1: sh({{ Mem_uh = Rt<15:0>; }}); |
| 0x3: sw({{ Mem_uw = Rt<31:0>; }}); |
| } |
| |
| format StoreUnalignedMemory { |
| 0x2: swl({{ |
| uint32_t reg_shift = 24 - (8 * byte_offset); |
| uint32_t mem_shift = 32 - reg_shift; |
| mem_word = (mem_word & (mask(reg_shift) << mem_shift)) | |
| (Rt_uw >> reg_shift); |
| }}); |
| 0x6: swr({{ |
| uint32_t reg_shift = 8 * byte_offset; |
| mem_word = Rt_uw << reg_shift | |
| (mem_word & (mask(reg_shift))); |
| }}); |
| } |
| format CP0Control { |
| 0x7: cache({{ |
| //Addr CacheEA = Rs_uw + OFFSET; |
| //fault = xc->CacheOp((uint8_t)CACHE_OP,(Addr) CacheEA); |
| }}); |
| } |
| } |
| |
| 0x6: decode OPCODE_LO { |
| format LoadMemory { |
| 0x0: ll({{ Rt_uw = Mem_uw; }}, mem_flags=LLSC); |
| 0x1: lwc1({{ Ft_uw = Mem_uw; }}); |
| 0x5: ldc1({{ Ft_ud = Mem_ud; }}); |
| } |
| 0x2: CP2Unimpl::lwc2(); |
| 0x6: CP2Unimpl::ldc2(); |
| 0x3: Prefetch::pref(); |
| } |
| |
| |
| 0x7: decode OPCODE_LO { |
| 0x0: StoreCond::sc({{ Mem_uw = Rt_uw; }}, |
| {{ uint64_t tmp = write_result; |
| Rt_uw = (tmp == 0 || tmp == 1) ? tmp : Rt_uw; |
| }}, mem_flags=LLSC, |
| inst_flags = IsStoreConditional); |
| format StoreMemory { |
| 0x1: swc1({{ Mem_uw = Ft_uw; }}); |
| 0x5: sdc1({{ Mem_ud = Ft_ud; }}); |
| } |
| 0x2: CP2Unimpl::swc2(); |
| 0x6: CP2Unimpl::sdc2(); |
| } |
| } |
| |
| |