| /* |
| * Copyright (c) 2001-2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Steve Reinhardt |
| * Nathan Binkert |
| */ |
| |
| #ifndef __CPU_SIMPLE_THREAD_HH__ |
| #define __CPU_SIMPLE_THREAD_HH__ |
| |
| #include "arch/isa.hh" |
| #include "arch/isa_traits.hh" |
| #include "arch/registers.hh" |
| #include "arch/tlb.hh" |
| #include "arch/types.hh" |
| #include "base/types.hh" |
| #include "config/full_system.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/thread_context.hh" |
| #include "cpu/thread_state.hh" |
| #include "mem/request.hh" |
| #include "sim/byteswap.hh" |
| #include "sim/eventq.hh" |
| #include "sim/serialize.hh" |
| |
| class BaseCPU; |
| |
| #if FULL_SYSTEM |
| |
| #include "sim/system.hh" |
| |
| class FunctionProfile; |
| class ProfileNode; |
| class FunctionalPort; |
| class PhysicalPort; |
| |
| namespace TheISA { |
| namespace Kernel { |
| class Statistics; |
| }; |
| }; |
| |
| #else // !FULL_SYSTEM |
| |
| #include "sim/process.hh" |
| #include "mem/page_table.hh" |
| class TranslatingPort; |
| |
| #endif // FULL_SYSTEM |
| |
| /** |
| * The SimpleThread object provides a combination of the ThreadState |
| * object and the ThreadContext interface. It implements the |
| * ThreadContext interface so that a ProxyThreadContext class can be |
| * made using SimpleThread as the template parameter (see |
| * thread_context.hh). It adds to the ThreadState object by adding all |
| * the objects needed for simple functional execution, including a |
| * simple architectural register file, and pointers to the ITB and DTB |
| * in full system mode. For CPU models that do not need more advanced |
| * ways to hold state (i.e. a separate physical register file, or |
| * separate fetch and commit PC's), this SimpleThread class provides |
| * all the necessary state for full architecture-level functional |
| * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for |
| * examples. |
| */ |
| |
| class SimpleThread : public ThreadState |
| { |
| protected: |
| typedef TheISA::MachInst MachInst; |
| typedef TheISA::MiscReg MiscReg; |
| typedef TheISA::FloatReg FloatReg; |
| typedef TheISA::FloatRegBits FloatRegBits; |
| public: |
| typedef ThreadContext::Status Status; |
| |
| protected: |
| union { |
| FloatReg f[TheISA::NumFloatRegs]; |
| FloatRegBits i[TheISA::NumFloatRegs]; |
| } floatRegs; |
| TheISA::IntReg intRegs[TheISA::NumIntRegs]; |
| TheISA::ISA isa; // one "instance" of the current ISA. |
| |
| /** The current microcode pc for the currently executing macro |
| * operation. |
| */ |
| MicroPC microPC; |
| |
| /** The next microcode pc for the currently executing macro |
| * operation. |
| */ |
| MicroPC nextMicroPC; |
| |
| /** The current pc. |
| */ |
| Addr PC; |
| |
| /** The next pc. |
| */ |
| Addr nextPC; |
| |
| /** The next next pc. |
| */ |
| Addr nextNPC; |
| |
| public: |
| // pointer to CPU associated with this SimpleThread |
| BaseCPU *cpu; |
| |
| ProxyThreadContext<SimpleThread> *tc; |
| |
| System *system; |
| |
| TheISA::TLB *itb; |
| TheISA::TLB *dtb; |
| |
| // constructor: initialize SimpleThread from given process structure |
| #if FULL_SYSTEM |
| SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, |
| TheISA::TLB *_itb, TheISA::TLB *_dtb, |
| bool use_kernel_stats = true); |
| #else |
| SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, |
| TheISA::TLB *_itb, TheISA::TLB *_dtb); |
| #endif |
| |
| SimpleThread(); |
| |
| virtual ~SimpleThread(); |
| |
| virtual void takeOverFrom(ThreadContext *oldContext); |
| |
| void regStats(const std::string &name); |
| |
| void copyTC(ThreadContext *context); |
| |
| void copyState(ThreadContext *oldContext); |
| |
| void serialize(std::ostream &os); |
| void unserialize(Checkpoint *cp, const std::string §ion); |
| |
| /*************************************************************** |
| * SimpleThread functions to provide CPU with access to various |
| * state. |
| **************************************************************/ |
| |
| /** Returns the pointer to this SimpleThread's ThreadContext. Used |
| * when a ThreadContext must be passed to objects outside of the |
| * CPU. |
| */ |
| ThreadContext *getTC() { return tc; } |
| |
| void demapPage(Addr vaddr, uint64_t asn) |
| { |
| itb->demapPage(vaddr, asn); |
| dtb->demapPage(vaddr, asn); |
| } |
| |
| void demapInstPage(Addr vaddr, uint64_t asn) |
| { |
| itb->demapPage(vaddr, asn); |
| } |
| |
| void demapDataPage(Addr vaddr, uint64_t asn) |
| { |
| dtb->demapPage(vaddr, asn); |
| } |
| |
| #if FULL_SYSTEM |
| void dumpFuncProfile(); |
| |
| Fault hwrei(); |
| |
| bool simPalCheck(int palFunc); |
| |
| #endif |
| |
| /******************************************* |
| * ThreadContext interface functions. |
| ******************************************/ |
| |
| BaseCPU *getCpuPtr() { return cpu; } |
| |
| TheISA::TLB *getITBPtr() { return itb; } |
| |
| TheISA::TLB *getDTBPtr() { return dtb; } |
| |
| System *getSystemPtr() { return system; } |
| |
| #if FULL_SYSTEM |
| FunctionalPort *getPhysPort() { return physPort; } |
| |
| /** Return a virtual port. This port cannot be cached locally in an object. |
| * After a CPU switch it may point to the wrong memory object which could |
| * mean stale data. |
| */ |
| VirtualPort *getVirtPort() { return virtPort; } |
| #endif |
| |
| Status status() const { return _status; } |
| |
| void setStatus(Status newStatus) { _status = newStatus; } |
| |
| /// Set the status to Active. Optional delay indicates number of |
| /// cycles to wait before beginning execution. |
| void activate(int delay = 1); |
| |
| /// Set the status to Suspended. |
| void suspend(); |
| |
| /// Set the status to Halted. |
| void halt(); |
| |
| virtual bool misspeculating(); |
| |
| Fault instRead(RequestPtr &req) |
| { |
| panic("instRead not implemented"); |
| // return funcPhysMem->read(req, inst); |
| return NoFault; |
| } |
| |
| void copyArchRegs(ThreadContext *tc); |
| |
| void clearArchRegs() |
| { |
| microPC = 0; |
| nextMicroPC = 1; |
| PC = nextPC = nextNPC = 0; |
| memset(intRegs, 0, sizeof(intRegs)); |
| memset(floatRegs.i, 0, sizeof(floatRegs.i)); |
| isa.clear(); |
| } |
| |
| // |
| // New accessors for new decoder. |
| // |
| uint64_t readIntReg(int reg_idx) |
| { |
| int flatIndex = isa.flattenIntIndex(reg_idx); |
| assert(flatIndex < TheISA::NumIntRegs); |
| uint64_t regVal = intRegs[flatIndex]; |
| DPRINTF(IntRegs, "Reading int reg %d as %#x.\n", reg_idx, regVal); |
| return regVal; |
| } |
| |
| FloatReg readFloatReg(int reg_idx) |
| { |
| int flatIndex = isa.flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| FloatReg regVal = floatRegs.f[flatIndex]; |
| DPRINTF(FloatRegs, "Reading float reg %d as %f, %#x.\n", |
| reg_idx, regVal, floatRegs.i[flatIndex]); |
| return regVal; |
| } |
| |
| FloatRegBits readFloatRegBits(int reg_idx) |
| { |
| int flatIndex = isa.flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| FloatRegBits regVal = floatRegs.i[flatIndex]; |
| DPRINTF(FloatRegs, "Reading float reg %d bits as %#x, %f.\n", |
| reg_idx, regVal, floatRegs.f[flatIndex]); |
| return regVal; |
| } |
| |
| void setIntReg(int reg_idx, uint64_t val) |
| { |
| int flatIndex = isa.flattenIntIndex(reg_idx); |
| assert(flatIndex < TheISA::NumIntRegs); |
| DPRINTF(IntRegs, "Setting int reg %d to %#x.\n", reg_idx, val); |
| intRegs[flatIndex] = val; |
| } |
| |
| void setFloatReg(int reg_idx, FloatReg val) |
| { |
| int flatIndex = isa.flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| floatRegs.f[flatIndex] = val; |
| DPRINTF(FloatRegs, "Setting float reg %d to %f, %#x.\n", |
| reg_idx, val, floatRegs.i[flatIndex]); |
| } |
| |
| void setFloatRegBits(int reg_idx, FloatRegBits val) |
| { |
| int flatIndex = isa.flattenFloatIndex(reg_idx); |
| assert(flatIndex < TheISA::NumFloatRegs); |
| floatRegs.i[flatIndex] = val; |
| DPRINTF(FloatRegs, "Setting float reg %d bits to %#x, %#f.\n", |
| reg_idx, val, floatRegs.f[flatIndex]); |
| } |
| |
| uint64_t readPC() |
| { |
| return PC; |
| } |
| |
| void setPC(uint64_t val) |
| { |
| PC = val; |
| } |
| |
| uint64_t readMicroPC() |
| { |
| return microPC; |
| } |
| |
| void setMicroPC(uint64_t val) |
| { |
| microPC = val; |
| } |
| |
| uint64_t readNextPC() |
| { |
| return nextPC; |
| } |
| |
| void setNextPC(uint64_t val) |
| { |
| nextPC = val; |
| } |
| |
| uint64_t readNextMicroPC() |
| { |
| return nextMicroPC; |
| } |
| |
| void setNextMicroPC(uint64_t val) |
| { |
| nextMicroPC = val; |
| } |
| |
| uint64_t readNextNPC() |
| { |
| #if ISA_HAS_DELAY_SLOT |
| return nextNPC; |
| #else |
| return nextPC + sizeof(TheISA::MachInst); |
| #endif |
| } |
| |
| void setNextNPC(uint64_t val) |
| { |
| #if ISA_HAS_DELAY_SLOT |
| nextNPC = val; |
| #endif |
| } |
| |
| MiscReg |
| readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) |
| { |
| return isa.readMiscRegNoEffect(misc_reg); |
| } |
| |
| MiscReg |
| readMiscReg(int misc_reg, ThreadID tid = 0) |
| { |
| return isa.readMiscReg(misc_reg, tc); |
| } |
| |
| void |
| setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0) |
| { |
| return isa.setMiscRegNoEffect(misc_reg, val); |
| } |
| |
| void |
| setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0) |
| { |
| return isa.setMiscReg(misc_reg, val, tc); |
| } |
| |
| int |
| flattenIntIndex(int reg) |
| { |
| return isa.flattenIntIndex(reg); |
| } |
| |
| int |
| flattenFloatIndex(int reg) |
| { |
| return isa.flattenFloatIndex(reg); |
| } |
| |
| unsigned readStCondFailures() { return storeCondFailures; } |
| |
| void setStCondFailures(unsigned sc_failures) |
| { storeCondFailures = sc_failures; } |
| |
| #if !FULL_SYSTEM |
| void syscall(int64_t callnum) |
| { |
| process->syscall(callnum, tc); |
| } |
| #endif |
| }; |
| |
| |
| // for non-speculative execution context, spec_mode is always false |
| inline bool |
| SimpleThread::misspeculating() |
| { |
| return false; |
| } |
| |
| #endif // __CPU_CPU_EXEC_CONTEXT_HH__ |