| /* |
| * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| This file has been modified by Kevin Moore and Dan Nussbaum of the |
| Scalable Systems Research Group at Sun Microsystems Laboratories |
| (http://research.sun.com/scalable/) to support the Adaptive |
| Transactional Memory Test Platform (ATMTP). |
| |
| Please send email to atmtp-interest@sun.com with feedback, questions, or |
| to request future announcements about ATMTP. |
| |
| ---------------------------------------------------------------------- |
| |
| File modification date: 2008-02-23 |
| |
| ---------------------------------------------------------------------- |
| */ |
| |
| // Allows use of times() library call, which determines virtual runtime |
| #include <sys/resource.h> |
| #include <sys/times.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <fstream> |
| |
| #include "base/stl_helpers.hh" |
| #include "base/str.hh" |
| #include "mem/protocol/MachineType.hh" |
| #include "mem/protocol/RubyRequest.hh" |
| #include "mem/ruby/network/Network.hh" |
| #include "mem/ruby/profiler/AddressProfiler.hh" |
| #include "mem/ruby/profiler/Profiler.hh" |
| #include "mem/ruby/system/System.hh" |
| |
| using namespace std; |
| using m5::stl_helpers::operator<<; |
| |
| static double process_memory_total(); |
| static double process_memory_resident(); |
| |
| Profiler::Profiler(const Params *p) |
| : SimObject(p), m_event(this) |
| { |
| m_inst_profiler_ptr = NULL; |
| m_address_profiler_ptr = NULL; |
| |
| m_real_time_start_time = time(NULL); // Not reset in clearStats() |
| m_stats_period = 1000000; // Default |
| m_periodic_output_file_ptr = &cerr; |
| |
| m_hot_lines = p->hot_lines; |
| m_all_instructions = p->all_instructions; |
| |
| m_num_of_sequencers = p->num_of_sequencers; |
| |
| m_hot_lines = false; |
| m_all_instructions = false; |
| |
| m_address_profiler_ptr = new AddressProfiler(m_num_of_sequencers); |
| m_address_profiler_ptr->setHotLines(m_hot_lines); |
| m_address_profiler_ptr->setAllInstructions(m_all_instructions); |
| |
| if (m_all_instructions) { |
| m_inst_profiler_ptr = new AddressProfiler(m_num_of_sequencers); |
| m_inst_profiler_ptr->setHotLines(m_hot_lines); |
| m_inst_profiler_ptr->setAllInstructions(m_all_instructions); |
| } |
| |
| p->ruby_system->registerProfiler(this); |
| } |
| |
| Profiler::~Profiler() |
| { |
| if (m_periodic_output_file_ptr != &cerr) { |
| delete m_periodic_output_file_ptr; |
| } |
| } |
| |
| void |
| Profiler::wakeup() |
| { |
| // FIXME - avoid the repeated code |
| |
| vector<int64_t> perProcCycleCount(m_num_of_sequencers); |
| |
| for (int i = 0; i < m_num_of_sequencers; i++) { |
| perProcCycleCount[i] = |
| g_system_ptr->getTime() - m_cycles_executed_at_start[i] + 1; |
| // The +1 allows us to avoid division by zero |
| } |
| |
| ostream &out = *m_periodic_output_file_ptr; |
| |
| out << "ruby_cycles: " << g_system_ptr->getTime()-m_ruby_start << endl |
| << "mbytes_resident: " << process_memory_resident() << endl |
| << "mbytes_total: " << process_memory_total() << endl; |
| |
| if (process_memory_total() > 0) { |
| out << "resident_ratio: " |
| << process_memory_resident() / process_memory_total() << endl; |
| } |
| |
| out << "miss_latency: " << m_allMissLatencyHistogram << endl; |
| |
| out << endl; |
| |
| if (m_all_instructions) { |
| m_inst_profiler_ptr->printStats(out); |
| } |
| |
| //g_system_ptr->getNetwork()->printStats(out); |
| schedule(m_event, g_system_ptr->clockEdge(Cycles(m_stats_period))); |
| } |
| |
| void |
| Profiler::setPeriodicStatsFile(const string& filename) |
| { |
| cout << "Recording periodic statistics to file '" << filename << "' every " |
| << m_stats_period << " Ruby cycles" << endl; |
| |
| if (m_periodic_output_file_ptr != &cerr) { |
| delete m_periodic_output_file_ptr; |
| } |
| |
| m_periodic_output_file_ptr = new ofstream(filename.c_str()); |
| schedule(m_event, g_system_ptr->clockEdge(Cycles(1))); |
| } |
| |
| void |
| Profiler::setPeriodicStatsInterval(int64_t period) |
| { |
| cout << "Recording periodic statistics every " << m_stats_period |
| << " Ruby cycles" << endl; |
| |
| m_stats_period = period; |
| schedule(m_event, g_system_ptr->clockEdge(Cycles(1))); |
| } |
| |
| void |
| Profiler::print(ostream& out) const |
| { |
| out << "[Profiler]"; |
| } |
| |
| void |
| Profiler::printRequestProfile(ostream &out) |
| { |
| out << "Request vs. RubySystem State Profile" << endl; |
| out << "--------------------------------" << endl; |
| out << endl; |
| |
| map<string, uint64_t> m_requestProfileMap; |
| uint64_t m_requests = 0; |
| |
| for (uint32_t i = 0; i < MachineType_NUM; i++) { |
| for (map<uint32_t, AbstractController*>::iterator it = |
| g_abs_controls[i].begin(); |
| it != g_abs_controls[i].end(); ++it) { |
| |
| AbstractController *ctr = (*it).second; |
| map<string, uint64_t> mp = ctr->getRequestProfileMap(); |
| |
| for (map<string, uint64_t>::iterator jt = mp.begin(); |
| jt != mp.end(); ++jt) { |
| |
| map<string, uint64_t>::iterator kt = |
| m_requestProfileMap.find((*jt).first); |
| if (kt != m_requestProfileMap.end()) { |
| (*kt).second += (*jt).second; |
| } else { |
| m_requestProfileMap[(*jt).first] = (*jt).second; |
| } |
| } |
| |
| m_requests += ctr->getRequestCount(); |
| } |
| } |
| |
| map<string, uint64_t>::const_iterator i = m_requestProfileMap.begin(); |
| map<string, uint64_t>::const_iterator end = m_requestProfileMap.end(); |
| for (; i != end; ++i) { |
| const string &key = i->first; |
| uint64_t count = i->second; |
| |
| double percent = (100.0 * double(count)) / double(m_requests); |
| vector<string> items; |
| tokenize(items, key, ':'); |
| vector<string>::iterator j = items.begin(); |
| vector<string>::iterator end = items.end(); |
| for (; j != end; ++i) |
| out << setw(10) << *j; |
| out << setw(11) << count; |
| out << setw(14) << percent << endl; |
| } |
| out << endl; |
| } |
| |
| void |
| Profiler::printDelayProfile(ostream &out) |
| { |
| out << "Message Delayed Cycles" << endl; |
| out << "----------------------" << endl; |
| |
| uint32_t numVNets = Network::getNumberOfVirtualNetworks(); |
| Histogram delayHistogram; |
| std::vector<Histogram> delayVCHistogram(numVNets); |
| |
| for (uint32_t i = 0; i < MachineType_NUM; i++) { |
| for (map<uint32_t, AbstractController*>::iterator it = |
| g_abs_controls[i].begin(); |
| it != g_abs_controls[i].end(); ++it) { |
| |
| AbstractController *ctr = (*it).second; |
| delayHistogram.add(ctr->getDelayHist()); |
| |
| for (uint32_t i = 0; i < numVNets; i++) { |
| delayVCHistogram[i].add(ctr->getDelayVCHist(i)); |
| } |
| } |
| } |
| |
| out << "Total_delay_cycles: " << delayHistogram << endl; |
| |
| for (int i = 0; i < numVNets; i++) { |
| out << " virtual_network_" << i << "_delay_cycles: " |
| << delayVCHistogram[i] << endl; |
| } |
| } |
| |
| void |
| Profiler::printStats(ostream& out, bool short_stats) |
| { |
| out << endl; |
| if (short_stats) { |
| out << "SHORT "; |
| } |
| out << "Profiler Stats" << endl; |
| out << "--------------" << endl; |
| |
| time_t real_time_current = time(NULL); |
| double seconds = difftime(real_time_current, m_real_time_start_time); |
| double minutes = seconds / 60.0; |
| double hours = minutes / 60.0; |
| double days = hours / 24.0; |
| Time ruby_cycles = g_system_ptr->getTime()-m_ruby_start; |
| |
| if (!short_stats) { |
| out << "Elapsed_time_in_seconds: " << seconds << endl; |
| out << "Elapsed_time_in_minutes: " << minutes << endl; |
| out << "Elapsed_time_in_hours: " << hours << endl; |
| out << "Elapsed_time_in_days: " << days << endl; |
| out << endl; |
| } |
| |
| // print the virtual runtimes as well |
| struct tms vtime; |
| times(&vtime); |
| seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0; |
| minutes = seconds / 60.0; |
| hours = minutes / 60.0; |
| days = hours / 24.0; |
| out << "Virtual_time_in_seconds: " << seconds << endl; |
| out << "Virtual_time_in_minutes: " << minutes << endl; |
| out << "Virtual_time_in_hours: " << hours << endl; |
| out << "Virtual_time_in_days: " << days << endl; |
| out << endl; |
| |
| out << "Ruby_current_time: " << g_system_ptr->getTime() << endl; |
| out << "Ruby_start_time: " << m_ruby_start << endl; |
| out << "Ruby_cycles: " << ruby_cycles << endl; |
| out << endl; |
| |
| if (!short_stats) { |
| out << "mbytes_resident: " << process_memory_resident() << endl; |
| out << "mbytes_total: " << process_memory_total() << endl; |
| if (process_memory_total() > 0) { |
| out << "resident_ratio: " |
| << process_memory_resident()/process_memory_total() << endl; |
| } |
| out << endl; |
| } |
| |
| vector<int64_t> perProcCycleCount(m_num_of_sequencers); |
| |
| for (int i = 0; i < m_num_of_sequencers; i++) { |
| perProcCycleCount[i] = |
| g_system_ptr->getTime() - m_cycles_executed_at_start[i] + 1; |
| // The +1 allows us to avoid division by zero |
| } |
| |
| out << "ruby_cycles_executed: " << perProcCycleCount << endl; |
| |
| out << endl; |
| |
| if (!short_stats) { |
| out << "Busy Controller Counts:" << endl; |
| for (uint32_t i = 0; i < MachineType_NUM; i++) { |
| uint32_t size = MachineType_base_count((MachineType)i); |
| |
| for (uint32_t j = 0; j < size; j++) { |
| MachineID machID; |
| machID.type = (MachineType)i; |
| machID.num = j; |
| |
| AbstractController *ctr = |
| (*(g_abs_controls[i].find(j))).second; |
| out << machID << ":" << ctr->getFullyBusyCycles() << " "; |
| if ((j + 1) % 8 == 0) { |
| out << endl; |
| } |
| } |
| out << endl; |
| } |
| out << endl; |
| |
| out << "Busy Bank Count:" << m_busyBankCount << endl; |
| out << endl; |
| |
| out << "sequencer_requests_outstanding: " |
| << m_sequencer_requests << endl; |
| out << endl; |
| } |
| |
| if (!short_stats) { |
| out << "All Non-Zero Cycle Demand Cache Accesses" << endl; |
| out << "----------------------------------------" << endl; |
| out << "miss_latency: " << m_allMissLatencyHistogram << endl; |
| for (int i = 0; i < m_missLatencyHistograms.size(); i++) { |
| if (m_missLatencyHistograms[i].size() > 0) { |
| out << "miss_latency_" << RubyRequestType(i) << ": " |
| << m_missLatencyHistograms[i] << endl; |
| } |
| } |
| for (int i = 0; i < m_machLatencyHistograms.size(); i++) { |
| if (m_machLatencyHistograms[i].size() > 0) { |
| out << "miss_latency_" << GenericMachineType(i) << ": " |
| << m_machLatencyHistograms[i] << endl; |
| } |
| } |
| |
| out << "miss_latency_wCC_issue_to_initial_request: " |
| << m_wCCIssueToInitialRequestHistogram << endl; |
| out << "miss_latency_wCC_initial_forward_request: " |
| << m_wCCInitialRequestToForwardRequestHistogram << endl; |
| out << "miss_latency_wCC_forward_to_first_response: " |
| << m_wCCForwardRequestToFirstResponseHistogram << endl; |
| out << "miss_latency_wCC_first_response_to_completion: " |
| << m_wCCFirstResponseToCompleteHistogram << endl; |
| out << "imcomplete_wCC_Times: " << m_wCCIncompleteTimes << endl; |
| out << "miss_latency_dir_issue_to_initial_request: " |
| << m_dirIssueToInitialRequestHistogram << endl; |
| out << "miss_latency_dir_initial_forward_request: " |
| << m_dirInitialRequestToForwardRequestHistogram << endl; |
| out << "miss_latency_dir_forward_to_first_response: " |
| << m_dirForwardRequestToFirstResponseHistogram << endl; |
| out << "miss_latency_dir_first_response_to_completion: " |
| << m_dirFirstResponseToCompleteHistogram << endl; |
| out << "imcomplete_dir_Times: " << m_dirIncompleteTimes << endl; |
| |
| for (int i = 0; i < m_missMachLatencyHistograms.size(); i++) { |
| for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) { |
| if (m_missMachLatencyHistograms[i][j].size() > 0) { |
| out << "miss_latency_" << RubyRequestType(i) |
| << "_" << GenericMachineType(j) << ": " |
| << m_missMachLatencyHistograms[i][j] << endl; |
| } |
| } |
| } |
| |
| out << endl; |
| |
| out << "All Non-Zero Cycle SW Prefetch Requests" << endl; |
| out << "------------------------------------" << endl; |
| out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl; |
| for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) { |
| if (m_SWPrefetchLatencyHistograms[i].size() > 0) { |
| out << "prefetch_latency_" << RubyRequestType(i) << ": " |
| << m_SWPrefetchLatencyHistograms[i] << endl; |
| } |
| } |
| for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) { |
| if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) { |
| out << "prefetch_latency_" << GenericMachineType(i) << ": " |
| << m_SWPrefetchMachLatencyHistograms[i] << endl; |
| } |
| } |
| out << "prefetch_latency_L2Miss:" |
| << m_SWPrefetchL2MissLatencyHistogram << endl; |
| |
| if (m_all_sharing_histogram.size() > 0) { |
| out << "all_sharing: " << m_all_sharing_histogram << endl; |
| out << "read_sharing: " << m_read_sharing_histogram << endl; |
| out << "write_sharing: " << m_write_sharing_histogram << endl; |
| |
| out << "all_sharing_percent: "; |
| m_all_sharing_histogram.printPercent(out); |
| out << endl; |
| |
| out << "read_sharing_percent: "; |
| m_read_sharing_histogram.printPercent(out); |
| out << endl; |
| |
| out << "write_sharing_percent: "; |
| m_write_sharing_histogram.printPercent(out); |
| out << endl; |
| |
| int64 total_miss = m_cache_to_cache + m_memory_to_cache; |
| out << "all_misses: " << total_miss << endl; |
| out << "cache_to_cache_misses: " << m_cache_to_cache << endl; |
| out << "memory_to_cache_misses: " << m_memory_to_cache << endl; |
| out << "cache_to_cache_percent: " |
| << 100.0 * (double(m_cache_to_cache) / double(total_miss)) |
| << endl; |
| out << "memory_to_cache_percent: " |
| << 100.0 * (double(m_memory_to_cache) / double(total_miss)) |
| << endl; |
| out << endl; |
| } |
| |
| if (m_outstanding_requests.size() > 0) { |
| out << "outstanding_requests: "; |
| m_outstanding_requests.printPercent(out); |
| out << endl; |
| out << endl; |
| } |
| } |
| |
| if (!short_stats) { |
| printRequestProfile(out); |
| |
| out << "filter_action: " << m_filter_action_histogram << endl; |
| |
| if (!m_all_instructions) { |
| m_address_profiler_ptr->printStats(out); |
| } |
| |
| if (m_all_instructions) { |
| m_inst_profiler_ptr->printStats(out); |
| } |
| |
| out << endl; |
| printDelayProfile(out); |
| printResourceUsage(out); |
| } |
| } |
| |
| void |
| Profiler::printResourceUsage(ostream& out) const |
| { |
| out << endl; |
| out << "Resource Usage" << endl; |
| out << "--------------" << endl; |
| |
| int64_t pagesize = getpagesize(); // page size in bytes |
| out << "page_size: " << pagesize << endl; |
| |
| rusage usage; |
| getrusage (RUSAGE_SELF, &usage); |
| |
| out << "user_time: " << usage.ru_utime.tv_sec << endl; |
| out << "system_time: " << usage.ru_stime.tv_sec << endl; |
| out << "page_reclaims: " << usage.ru_minflt << endl; |
| out << "page_faults: " << usage.ru_majflt << endl; |
| out << "swaps: " << usage.ru_nswap << endl; |
| out << "block_inputs: " << usage.ru_inblock << endl; |
| out << "block_outputs: " << usage.ru_oublock << endl; |
| } |
| |
| void |
| Profiler::clearStats() |
| { |
| m_ruby_start = g_system_ptr->getTime(); |
| m_real_time_start_time = time(NULL); |
| |
| m_cycles_executed_at_start.resize(m_num_of_sequencers); |
| for (int i = 0; i < m_num_of_sequencers; i++) { |
| if (g_system_ptr == NULL) { |
| m_cycles_executed_at_start[i] = 0; |
| } else { |
| m_cycles_executed_at_start[i] = g_system_ptr->getTime(); |
| } |
| } |
| |
| m_busyBankCount = 0; |
| |
| m_missLatencyHistograms.resize(RubyRequestType_NUM); |
| for (int i = 0; i < m_missLatencyHistograms.size(); i++) { |
| m_missLatencyHistograms[i].clear(200); |
| } |
| m_machLatencyHistograms.resize(GenericMachineType_NUM+1); |
| for (int i = 0; i < m_machLatencyHistograms.size(); i++) { |
| m_machLatencyHistograms[i].clear(200); |
| } |
| m_missMachLatencyHistograms.resize(RubyRequestType_NUM); |
| for (int i = 0; i < m_missLatencyHistograms.size(); i++) { |
| m_missMachLatencyHistograms[i].resize(GenericMachineType_NUM+1); |
| for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) { |
| m_missMachLatencyHistograms[i][j].clear(200); |
| } |
| } |
| m_allMissLatencyHistogram.clear(200); |
| m_wCCIssueToInitialRequestHistogram.clear(200); |
| m_wCCInitialRequestToForwardRequestHistogram.clear(200); |
| m_wCCForwardRequestToFirstResponseHistogram.clear(200); |
| m_wCCFirstResponseToCompleteHistogram.clear(200); |
| m_wCCIncompleteTimes = 0; |
| m_dirIssueToInitialRequestHistogram.clear(200); |
| m_dirInitialRequestToForwardRequestHistogram.clear(200); |
| m_dirForwardRequestToFirstResponseHistogram.clear(200); |
| m_dirFirstResponseToCompleteHistogram.clear(200); |
| m_dirIncompleteTimes = 0; |
| |
| m_SWPrefetchLatencyHistograms.resize(RubyRequestType_NUM); |
| for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) { |
| m_SWPrefetchLatencyHistograms[i].clear(200); |
| } |
| m_SWPrefetchMachLatencyHistograms.resize(GenericMachineType_NUM+1); |
| for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) { |
| m_SWPrefetchMachLatencyHistograms[i].clear(200); |
| } |
| m_allSWPrefetchLatencyHistogram.clear(200); |
| |
| m_sequencer_requests.clear(); |
| m_read_sharing_histogram.clear(); |
| m_write_sharing_histogram.clear(); |
| m_all_sharing_histogram.clear(); |
| m_cache_to_cache = 0; |
| m_memory_to_cache = 0; |
| |
| m_outstanding_requests.clear(); |
| m_outstanding_persistent_requests.clear(); |
| |
| // Flush the prefetches through the system - used so that there |
| // are no outstanding requests after stats are cleared |
| //g_eventQueue_ptr->triggerAllEvents(); |
| |
| // update the start time |
| m_ruby_start = g_system_ptr->getTime(); |
| } |
| |
| void |
| Profiler::addAddressTraceSample(const RubyRequest& msg, NodeID id) |
| { |
| if (msg.getType() != RubyRequestType_IFETCH) { |
| // Note: The following line should be commented out if you |
| // want to use the special profiling that is part of the GS320 |
| // protocol |
| |
| // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be |
| // profiled by the AddressProfiler |
| m_address_profiler_ptr-> |
| addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), |
| msg.getType(), msg.getAccessMode(), id, false); |
| } |
| } |
| |
| void |
| Profiler::profileSharing(const Address& addr, AccessType type, |
| NodeID requestor, const Set& sharers, |
| const Set& owner) |
| { |
| Set set_contacted(owner); |
| if (type == AccessType_Write) { |
| set_contacted.addSet(sharers); |
| } |
| set_contacted.remove(requestor); |
| int number_contacted = set_contacted.count(); |
| |
| if (type == AccessType_Write) { |
| m_write_sharing_histogram.add(number_contacted); |
| } else { |
| m_read_sharing_histogram.add(number_contacted); |
| } |
| m_all_sharing_histogram.add(number_contacted); |
| |
| if (number_contacted == 0) { |
| m_memory_to_cache++; |
| } else { |
| m_cache_to_cache++; |
| } |
| } |
| |
| void |
| Profiler::profilePFWait(Time waitTime) |
| { |
| m_prefetchWaitHistogram.add(waitTime); |
| } |
| |
| void |
| Profiler::bankBusy() |
| { |
| m_busyBankCount++; |
| } |
| |
| // non-zero cycle demand request |
| void |
| Profiler::missLatency(Time cycles, |
| RubyRequestType type, |
| const GenericMachineType respondingMach) |
| { |
| m_allMissLatencyHistogram.add(cycles); |
| m_missLatencyHistograms[type].add(cycles); |
| m_machLatencyHistograms[respondingMach].add(cycles); |
| m_missMachLatencyHistograms[type][respondingMach].add(cycles); |
| } |
| |
| void |
| Profiler::missLatencyWcc(Time issuedTime, |
| Time initialRequestTime, |
| Time forwardRequestTime, |
| Time firstResponseTime, |
| Time completionTime) |
| { |
| if ((issuedTime <= initialRequestTime) && |
| (initialRequestTime <= forwardRequestTime) && |
| (forwardRequestTime <= firstResponseTime) && |
| (firstResponseTime <= completionTime)) { |
| m_wCCIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime); |
| |
| m_wCCInitialRequestToForwardRequestHistogram.add(forwardRequestTime - |
| initialRequestTime); |
| |
| m_wCCForwardRequestToFirstResponseHistogram.add(firstResponseTime - |
| forwardRequestTime); |
| |
| m_wCCFirstResponseToCompleteHistogram.add(completionTime - |
| firstResponseTime); |
| } else { |
| m_wCCIncompleteTimes++; |
| } |
| } |
| |
| void |
| Profiler::missLatencyDir(Time issuedTime, |
| Time initialRequestTime, |
| Time forwardRequestTime, |
| Time firstResponseTime, |
| Time completionTime) |
| { |
| if ((issuedTime <= initialRequestTime) && |
| (initialRequestTime <= forwardRequestTime) && |
| (forwardRequestTime <= firstResponseTime) && |
| (firstResponseTime <= completionTime)) { |
| m_dirIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime); |
| |
| m_dirInitialRequestToForwardRequestHistogram.add(forwardRequestTime - |
| initialRequestTime); |
| |
| m_dirForwardRequestToFirstResponseHistogram.add(firstResponseTime - |
| forwardRequestTime); |
| |
| m_dirFirstResponseToCompleteHistogram.add(completionTime - |
| firstResponseTime); |
| } else { |
| m_dirIncompleteTimes++; |
| } |
| } |
| |
| // non-zero cycle prefetch request |
| void |
| Profiler::swPrefetchLatency(Time cycles, |
| RubyRequestType type, |
| const GenericMachineType respondingMach) |
| { |
| m_allSWPrefetchLatencyHistogram.add(cycles); |
| m_SWPrefetchLatencyHistograms[type].add(cycles); |
| m_SWPrefetchMachLatencyHistograms[respondingMach].add(cycles); |
| if (respondingMach == GenericMachineType_Directory || |
| respondingMach == GenericMachineType_NUM) { |
| m_SWPrefetchL2MissLatencyHistogram.add(cycles); |
| } |
| } |
| |
| // Helper function |
| static double |
| process_memory_total() |
| { |
| // 4kB page size, 1024*1024 bytes per MB, |
| const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); |
| ifstream proc_file; |
| proc_file.open("/proc/self/statm"); |
| int total_size_in_pages = 0; |
| int res_size_in_pages = 0; |
| proc_file >> total_size_in_pages; |
| proc_file >> res_size_in_pages; |
| return double(total_size_in_pages) * MULTIPLIER; // size in megabytes |
| } |
| |
| static double |
| process_memory_resident() |
| { |
| // 4kB page size, 1024*1024 bytes per MB, |
| const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); |
| ifstream proc_file; |
| proc_file.open("/proc/self/statm"); |
| int total_size_in_pages = 0; |
| int res_size_in_pages = 0; |
| proc_file >> total_size_in_pages; |
| proc_file >> res_size_in_pages; |
| return double(res_size_in_pages) * MULTIPLIER; // size in megabytes |
| } |
| |
| void |
| Profiler::rubyWatch(int id) |
| { |
| uint64 tr = 0; |
| Address watch_address = Address(tr); |
| |
| DPRINTFN("%7s %3s RUBY WATCH %d\n", g_system_ptr->getTime(), id, |
| watch_address); |
| |
| // don't care about success or failure |
| m_watch_address_set.insert(watch_address); |
| } |
| |
| bool |
| Profiler::watchAddress(Address addr) |
| { |
| return m_watch_address_set.count(addr) > 0; |
| } |
| |
| Profiler * |
| RubyProfilerParams::create() |
| { |
| return new Profiler(this); |
| } |