| /* |
| * Copyright (c) 2012-2014,2017 ARM Limited |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2004-2006 The Regents of The University of Michigan |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| * Korey Sewell |
| */ |
| |
| #ifndef __CPU_O3_LSQ_UNIT_HH__ |
| #define __CPU_O3_LSQ_UNIT_HH__ |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <map> |
| #include <queue> |
| |
| #include "arch/generic/debugfaults.hh" |
| #include "arch/isa_traits.hh" |
| #include "arch/locked_mem.hh" |
| #include "arch/mmapped_ipr.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/inst_seq.hh" |
| #include "cpu/timebuf.hh" |
| #include "debug/LSQUnit.hh" |
| #include "mem/packet.hh" |
| #include "mem/port.hh" |
| |
| struct DerivO3CPUParams; |
| |
| /** |
| * Class that implements the actual LQ and SQ for each specific |
| * thread. Both are circular queues; load entries are freed upon |
| * committing, while store entries are freed once they writeback. The |
| * LSQUnit tracks if there are memory ordering violations, and also |
| * detects partial load to store forwarding cases (a store only has |
| * part of a load's data) that requires the load to wait until the |
| * store writes back. In the former case it holds onto the instruction |
| * until the dependence unit looks at it, and in the latter it stalls |
| * the LSQ until the store writes back. At that point the load is |
| * replayed. |
| */ |
| template <class Impl> |
| class LSQUnit { |
| public: |
| typedef typename Impl::O3CPU O3CPU; |
| typedef typename Impl::DynInstPtr DynInstPtr; |
| typedef typename Impl::CPUPol::IEW IEW; |
| typedef typename Impl::CPUPol::LSQ LSQ; |
| typedef typename Impl::CPUPol::IssueStruct IssueStruct; |
| |
| public: |
| /** Constructs an LSQ unit. init() must be called prior to use. */ |
| LSQUnit(); |
| |
| /** Initializes the LSQ unit with the specified number of entries. */ |
| void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params, |
| LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries, |
| unsigned id); |
| |
| /** Returns the name of the LSQ unit. */ |
| std::string name() const; |
| |
| /** Registers statistics. */ |
| void regStats(); |
| |
| /** Sets the pointer to the dcache port. */ |
| void setDcachePort(MasterPort *dcache_port); |
| |
| /** Perform sanity checks after a drain. */ |
| void drainSanityCheck() const; |
| |
| /** Takes over from another CPU's thread. */ |
| void takeOverFrom(); |
| |
| /** Ticks the LSQ unit, which in this case only resets the number of |
| * used cache ports. |
| * @todo: Move the number of used ports up to the LSQ level so it can |
| * be shared by all LSQ units. |
| */ |
| void tick() { usedStorePorts = 0; } |
| |
| /** Inserts an instruction. */ |
| void insert(DynInstPtr &inst); |
| /** Inserts a load instruction. */ |
| void insertLoad(DynInstPtr &load_inst); |
| /** Inserts a store instruction. */ |
| void insertStore(DynInstPtr &store_inst); |
| |
| /** Check for ordering violations in the LSQ. For a store squash if we |
| * ever find a conflicting load. For a load, only squash if we |
| * an external snoop invalidate has been seen for that load address |
| * @param load_idx index to start checking at |
| * @param inst the instruction to check |
| */ |
| Fault checkViolations(int load_idx, DynInstPtr &inst); |
| |
| /** Check if an incoming invalidate hits in the lsq on a load |
| * that might have issued out of order wrt another load beacuse |
| * of the intermediate invalidate. |
| */ |
| void checkSnoop(PacketPtr pkt); |
| |
| /** Executes a load instruction. */ |
| Fault executeLoad(DynInstPtr &inst); |
| |
| Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; } |
| /** Executes a store instruction. */ |
| Fault executeStore(DynInstPtr &inst); |
| |
| /** Commits the head load. */ |
| void commitLoad(); |
| /** Commits loads older than a specific sequence number. */ |
| void commitLoads(InstSeqNum &youngest_inst); |
| |
| /** Commits stores older than a specific sequence number. */ |
| void commitStores(InstSeqNum &youngest_inst); |
| |
| /** Writes back stores. */ |
| void writebackStores(); |
| |
| /** Completes the data access that has been returned from the |
| * memory system. */ |
| void completeDataAccess(PacketPtr pkt); |
| |
| /** Clears all the entries in the LQ. */ |
| void clearLQ(); |
| |
| /** Clears all the entries in the SQ. */ |
| void clearSQ(); |
| |
| /** Resizes the LQ to a given size. */ |
| void resizeLQ(unsigned size); |
| |
| /** Resizes the SQ to a given size. */ |
| void resizeSQ(unsigned size); |
| |
| /** Squashes all instructions younger than a specific sequence number. */ |
| void squash(const InstSeqNum &squashed_num); |
| |
| /** Returns if there is a memory ordering violation. Value is reset upon |
| * call to getMemDepViolator(). |
| */ |
| bool violation() { return memDepViolator; } |
| |
| /** Returns the memory ordering violator. */ |
| DynInstPtr getMemDepViolator(); |
| |
| /** Returns the number of free LQ entries. */ |
| unsigned numFreeLoadEntries(); |
| |
| /** Returns the number of free SQ entries. */ |
| unsigned numFreeStoreEntries(); |
| |
| /** Returns the number of loads in the LQ. */ |
| int numLoads() { return loads; } |
| |
| /** Returns the number of stores in the SQ. */ |
| int numStores() { return stores; } |
| |
| /** Returns if either the LQ or SQ is full. */ |
| bool isFull() { return lqFull() || sqFull(); } |
| |
| /** Returns if both the LQ and SQ are empty. */ |
| bool isEmpty() const { return lqEmpty() && sqEmpty(); } |
| |
| /** Returns if the LQ is full. */ |
| bool lqFull() { return loads >= (LQEntries - 1); } |
| |
| /** Returns if the SQ is full. */ |
| bool sqFull() { return stores >= (SQEntries - 1); } |
| |
| /** Returns if the LQ is empty. */ |
| bool lqEmpty() const { return loads == 0; } |
| |
| /** Returns if the SQ is empty. */ |
| bool sqEmpty() const { return stores == 0; } |
| |
| /** Returns the number of instructions in the LSQ. */ |
| unsigned getCount() { return loads + stores; } |
| |
| /** Returns if there are any stores to writeback. */ |
| bool hasStoresToWB() { return storesToWB; } |
| |
| /** Returns the number of stores to writeback. */ |
| int numStoresToWB() { return storesToWB; } |
| |
| /** Returns if the LSQ unit will writeback on this cycle. */ |
| bool willWB() { return storeQueue[storeWBIdx].canWB && |
| !storeQueue[storeWBIdx].completed && |
| !isStoreBlocked; } |
| |
| /** Handles doing the retry. */ |
| void recvRetry(); |
| |
| private: |
| /** Reset the LSQ state */ |
| void resetState(); |
| |
| /** Writes back the instruction, sending it to IEW. */ |
| void writeback(DynInstPtr &inst, PacketPtr pkt); |
| |
| /** Writes back a store that couldn't be completed the previous cycle. */ |
| void writebackPendingStore(); |
| |
| /** Handles completing the send of a store to memory. */ |
| void storePostSend(PacketPtr pkt); |
| |
| /** Completes the store at the specified index. */ |
| void completeStore(int store_idx); |
| |
| /** Attempts to send a store to the cache. */ |
| bool sendStore(PacketPtr data_pkt); |
| |
| /** Increments the given store index (circular queue). */ |
| inline void incrStIdx(int &store_idx) const; |
| /** Decrements the given store index (circular queue). */ |
| inline void decrStIdx(int &store_idx) const; |
| /** Increments the given load index (circular queue). */ |
| inline void incrLdIdx(int &load_idx) const; |
| /** Decrements the given load index (circular queue). */ |
| inline void decrLdIdx(int &load_idx) const; |
| |
| public: |
| /** Debugging function to dump instructions in the LSQ. */ |
| void dumpInsts() const; |
| |
| private: |
| /** Pointer to the CPU. */ |
| O3CPU *cpu; |
| |
| /** Pointer to the IEW stage. */ |
| IEW *iewStage; |
| |
| /** Pointer to the LSQ. */ |
| LSQ *lsq; |
| |
| /** Pointer to the dcache port. Used only for sending. */ |
| MasterPort *dcachePort; |
| |
| /** Derived class to hold any sender state the LSQ needs. */ |
| class LSQSenderState : public Packet::SenderState |
| { |
| public: |
| /** Default constructor. */ |
| LSQSenderState() |
| : mainPkt(NULL), pendingPacket(NULL), idx(0), outstanding(1), |
| isLoad(false), noWB(false), isSplit(false), |
| pktToSend(false), cacheBlocked(false) |
| { } |
| |
| /** Instruction who initiated the access to memory. */ |
| DynInstPtr inst; |
| /** The main packet from a split load, used during writeback. */ |
| PacketPtr mainPkt; |
| /** A second packet from a split store that needs sending. */ |
| PacketPtr pendingPacket; |
| /** The LQ/SQ index of the instruction. */ |
| uint8_t idx; |
| /** Number of outstanding packets to complete. */ |
| uint8_t outstanding; |
| /** Whether or not it is a load. */ |
| bool isLoad; |
| /** Whether or not the instruction will need to writeback. */ |
| bool noWB; |
| /** Whether or not this access is split in two. */ |
| bool isSplit; |
| /** Whether or not there is a packet that needs sending. */ |
| bool pktToSend; |
| /** Whether or not the second packet of this split load was blocked */ |
| bool cacheBlocked; |
| |
| /** Completes a packet and returns whether the access is finished. */ |
| inline bool complete() { return --outstanding == 0; } |
| }; |
| |
| /** Writeback event, specifically for when stores forward data to loads. */ |
| class WritebackEvent : public Event { |
| public: |
| /** Constructs a writeback event. */ |
| WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr); |
| |
| /** Processes the writeback event. */ |
| void process(); |
| |
| /** Returns the description of this event. */ |
| const char *description() const; |
| |
| private: |
| /** Instruction whose results are being written back. */ |
| DynInstPtr inst; |
| |
| /** The packet that would have been sent to memory. */ |
| PacketPtr pkt; |
| |
| /** The pointer to the LSQ unit that issued the store. */ |
| LSQUnit<Impl> *lsqPtr; |
| }; |
| |
| public: |
| struct SQEntry { |
| /** Constructs an empty store queue entry. */ |
| SQEntry() |
| : inst(NULL), req(NULL), size(0), |
| canWB(0), committed(0), completed(0) |
| { |
| std::memset(data, 0, sizeof(data)); |
| } |
| |
| ~SQEntry() |
| { |
| inst = NULL; |
| } |
| |
| /** Constructs a store queue entry for a given instruction. */ |
| SQEntry(DynInstPtr &_inst) |
| : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0), |
| isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0) |
| { |
| std::memset(data, 0, sizeof(data)); |
| } |
| /** The store data. */ |
| char data[16]; |
| /** The store instruction. */ |
| DynInstPtr inst; |
| /** The request for the store. */ |
| RequestPtr req; |
| /** The split requests for the store. */ |
| RequestPtr sreqLow; |
| RequestPtr sreqHigh; |
| /** The size of the store. */ |
| uint8_t size; |
| /** Whether or not the store is split into two requests. */ |
| bool isSplit; |
| /** Whether or not the store can writeback. */ |
| bool canWB; |
| /** Whether or not the store is committed. */ |
| bool committed; |
| /** Whether or not the store is completed. */ |
| bool completed; |
| /** Does this request write all zeros and thus doesn't |
| * have any data attached to it. Used for cache block zero |
| * style instructs (ARM DC ZVA; ALPHA WH64) |
| */ |
| bool isAllZeros; |
| }; |
| |
| private: |
| /** The LSQUnit thread id. */ |
| ThreadID lsqID; |
| |
| /** The store queue. */ |
| std::vector<SQEntry> storeQueue; |
| |
| /** The load queue. */ |
| std::vector<DynInstPtr> loadQueue; |
| |
| /** The number of LQ entries, plus a sentinel entry (circular queue). |
| * @todo: Consider having var that records the true number of LQ entries. |
| */ |
| unsigned LQEntries; |
| /** The number of SQ entries, plus a sentinel entry (circular queue). |
| * @todo: Consider having var that records the true number of SQ entries. |
| */ |
| unsigned SQEntries; |
| |
| /** The number of places to shift addresses in the LSQ before checking |
| * for dependency violations |
| */ |
| unsigned depCheckShift; |
| |
| /** Should loads be checked for dependency issues */ |
| bool checkLoads; |
| |
| /** The number of load instructions in the LQ. */ |
| int loads; |
| /** The number of store instructions in the SQ. */ |
| int stores; |
| /** The number of store instructions in the SQ waiting to writeback. */ |
| int storesToWB; |
| |
| /** The index of the head instruction in the LQ. */ |
| int loadHead; |
| /** The index of the tail instruction in the LQ. */ |
| int loadTail; |
| |
| /** The index of the head instruction in the SQ. */ |
| int storeHead; |
| /** The index of the first instruction that may be ready to be |
| * written back, and has not yet been written back. |
| */ |
| int storeWBIdx; |
| /** The index of the tail instruction in the SQ. */ |
| int storeTail; |
| |
| /// @todo Consider moving to a more advanced model with write vs read ports |
| /** The number of cache ports available each cycle (stores only). */ |
| int cacheStorePorts; |
| |
| /** The number of used cache ports in this cycle by stores. */ |
| int usedStorePorts; |
| |
| //list<InstSeqNum> mshrSeqNums; |
| |
| /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */ |
| Addr cacheBlockMask; |
| |
| /** Wire to read information from the issue stage time queue. */ |
| typename TimeBuffer<IssueStruct>::wire fromIssue; |
| |
| /** Whether or not the LSQ is stalled. */ |
| bool stalled; |
| /** The store that causes the stall due to partial store to load |
| * forwarding. |
| */ |
| InstSeqNum stallingStoreIsn; |
| /** The index of the above store. */ |
| int stallingLoadIdx; |
| |
| /** The packet that needs to be retried. */ |
| PacketPtr retryPkt; |
| |
| /** Whehter or not a store is blocked due to the memory system. */ |
| bool isStoreBlocked; |
| |
| /** Whether or not a store is in flight. */ |
| bool storeInFlight; |
| |
| /** The oldest load that caused a memory ordering violation. */ |
| DynInstPtr memDepViolator; |
| |
| /** Whether or not there is a packet that couldn't be sent because of |
| * a lack of cache ports. */ |
| bool hasPendingPkt; |
| |
| /** The packet that is pending free cache ports. */ |
| PacketPtr pendingPkt; |
| |
| /** Flag for memory model. */ |
| bool needsTSO; |
| |
| // Will also need how many read/write ports the Dcache has. Or keep track |
| // of that in stage that is one level up, and only call executeLoad/Store |
| // the appropriate number of times. |
| /** Total number of loads forwaded from LSQ stores. */ |
| Stats::Scalar lsqForwLoads; |
| |
| /** Total number of loads ignored due to invalid addresses. */ |
| Stats::Scalar invAddrLoads; |
| |
| /** Total number of squashed loads. */ |
| Stats::Scalar lsqSquashedLoads; |
| |
| /** Total number of responses from the memory system that are |
| * ignored due to the instruction already being squashed. */ |
| Stats::Scalar lsqIgnoredResponses; |
| |
| /** Tota number of memory ordering violations. */ |
| Stats::Scalar lsqMemOrderViolation; |
| |
| /** Total number of squashed stores. */ |
| Stats::Scalar lsqSquashedStores; |
| |
| /** Total number of software prefetches ignored due to invalid addresses. */ |
| Stats::Scalar invAddrSwpfs; |
| |
| /** Ready loads blocked due to partial store-forwarding. */ |
| Stats::Scalar lsqBlockedLoads; |
| |
| /** Number of loads that were rescheduled. */ |
| Stats::Scalar lsqRescheduledLoads; |
| |
| /** Number of times the LSQ is blocked due to the cache. */ |
| Stats::Scalar lsqCacheBlocked; |
| |
| public: |
| /** Executes the load at the given index. */ |
| Fault read(const RequestPtr &req, |
| RequestPtr &sreqLow, RequestPtr &sreqHigh, |
| int load_idx); |
| |
| /** Executes the store at the given index. */ |
| Fault write(const RequestPtr &req, |
| const RequestPtr &sreqLow, const RequestPtr &sreqHigh, |
| uint8_t *data, int store_idx); |
| |
| /** Returns the index of the head load instruction. */ |
| int getLoadHead() { return loadHead; } |
| /** Returns the sequence number of the head load instruction. */ |
| InstSeqNum getLoadHeadSeqNum() |
| { |
| if (loadQueue[loadHead]) { |
| return loadQueue[loadHead]->seqNum; |
| } else { |
| return 0; |
| } |
| |
| } |
| |
| /** Returns the index of the head store instruction. */ |
| int getStoreHead() { return storeHead; } |
| /** Returns the sequence number of the head store instruction. */ |
| InstSeqNum getStoreHeadSeqNum() |
| { |
| if (storeQueue[storeHead].inst) { |
| return storeQueue[storeHead].inst->seqNum; |
| } else { |
| return 0; |
| } |
| |
| } |
| |
| /** Returns whether or not the LSQ unit is stalled. */ |
| bool isStalled() { return stalled; } |
| }; |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::read(const RequestPtr &req, |
| RequestPtr &sreqLow, RequestPtr &sreqHigh, |
| int load_idx) |
| { |
| DynInstPtr load_inst = loadQueue[load_idx]; |
| |
| assert(load_inst); |
| |
| assert(!load_inst->isExecuted()); |
| |
| // Make sure this isn't a strictly ordered load |
| // A bit of a hackish way to get strictly ordered accesses to work |
| // only if they're at the head of the LSQ and are ready to commit |
| // (at the head of the ROB too). |
| if (req->isStrictlyOrdered() && |
| (load_idx != loadHead || !load_inst->isAtCommit())) { |
| iewStage->rescheduleMemInst(load_inst); |
| ++lsqRescheduledLoads; |
| DPRINTF(LSQUnit, "Strictly ordered load [sn:%lli] PC %s\n", |
| load_inst->seqNum, load_inst->pcState()); |
| |
| return std::make_shared<GenericISA::M5PanicFault>( |
| "Strictly ordered load [sn:%llx] PC %s\n", |
| load_inst->seqNum, load_inst->pcState()); |
| } |
| |
| // Check the SQ for any previous stores that might lead to forwarding |
| int store_idx = load_inst->sqIdx; |
| |
| int store_size = 0; |
| |
| DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, " |
| "storeHead: %i addr: %#x%s\n", |
| load_idx, store_idx, storeHead, req->getPaddr(), |
| sreqLow ? " split" : ""); |
| |
| if (req->isLLSC()) { |
| assert(!sreqLow); |
| // Disable recording the result temporarily. Writing to misc |
| // regs normally updates the result, but this is not the |
| // desired behavior when handling store conditionals. |
| load_inst->recordResult(false); |
| TheISA::handleLockedRead(load_inst.get(), req); |
| load_inst->recordResult(true); |
| } |
| |
| if (req->isMmappedIpr()) { |
| assert(!load_inst->memData); |
| load_inst->memData = new uint8_t[64]; |
| |
| ThreadContext *thread = cpu->tcBase(lsqID); |
| Cycles delay(0); |
| PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); |
| |
| data_pkt->dataStatic(load_inst->memData); |
| if (!TheISA::HasUnalignedMemAcc || !sreqLow) { |
| delay = TheISA::handleIprRead(thread, data_pkt); |
| } else { |
| assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr()); |
| PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq); |
| PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq); |
| |
| fst_data_pkt->dataStatic(load_inst->memData); |
| snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); |
| |
| delay = TheISA::handleIprRead(thread, fst_data_pkt); |
| Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt); |
| if (delay2 > delay) |
| delay = delay2; |
| |
| delete fst_data_pkt; |
| delete snd_data_pkt; |
| } |
| WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); |
| cpu->schedule(wb, cpu->clockEdge(delay)); |
| return NoFault; |
| } |
| |
| while (store_idx != -1) { |
| // End once we've reached the top of the LSQ |
| if (store_idx == storeWBIdx) { |
| break; |
| } |
| |
| // Move the index to one younger |
| if (--store_idx < 0) |
| store_idx += SQEntries; |
| |
| assert(storeQueue[store_idx].inst); |
| |
| store_size = storeQueue[store_idx].size; |
| |
| if (!store_size || storeQueue[store_idx].inst->strictlyOrdered() || |
| (storeQueue[store_idx].req && |
| storeQueue[store_idx].req->isCacheMaintenance())) { |
| // Cache maintenance instructions go down via the store |
| // path but they carry no data and they shouldn't be |
| // considered for forwarding |
| continue; |
| } |
| |
| assert(storeQueue[store_idx].inst->effAddrValid()); |
| |
| // Check if the store data is within the lower and upper bounds of |
| // addresses that the request needs. |
| bool store_has_lower_limit = |
| req->getVaddr() >= storeQueue[store_idx].inst->effAddr; |
| bool store_has_upper_limit = |
| (req->getVaddr() + req->getSize()) <= |
| (storeQueue[store_idx].inst->effAddr + store_size); |
| bool lower_load_has_store_part = |
| req->getVaddr() < (storeQueue[store_idx].inst->effAddr + |
| store_size); |
| bool upper_load_has_store_part = |
| (req->getVaddr() + req->getSize()) > |
| storeQueue[store_idx].inst->effAddr; |
| |
| // If the store's data has all of the data needed and the load isn't |
| // LLSC, we can forward. |
| if (store_has_lower_limit && store_has_upper_limit && !req->isLLSC()) { |
| // Get shift amount for offset into the store's data. |
| int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr; |
| |
| // Allocate memory if this is the first time a load is issued. |
| if (!load_inst->memData) { |
| load_inst->memData = new uint8_t[req->getSize()]; |
| } |
| if (storeQueue[store_idx].isAllZeros) |
| memset(load_inst->memData, 0, req->getSize()); |
| else |
| memcpy(load_inst->memData, |
| storeQueue[store_idx].data + shift_amt, req->getSize()); |
| |
| DPRINTF(LSQUnit, "Forwarding from store idx %i to load to " |
| "addr %#x\n", store_idx, req->getVaddr()); |
| |
| PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq); |
| data_pkt->dataStatic(load_inst->memData); |
| |
| WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this); |
| |
| // We'll say this has a 1 cycle load-store forwarding latency |
| // for now. |
| // @todo: Need to make this a parameter. |
| cpu->schedule(wb, curTick()); |
| |
| ++lsqForwLoads; |
| return NoFault; |
| } else if ( |
| (!req->isLLSC() && |
| ((store_has_lower_limit && lower_load_has_store_part) || |
| (store_has_upper_limit && upper_load_has_store_part) || |
| (lower_load_has_store_part && upper_load_has_store_part))) || |
| (req->isLLSC() && |
| ((store_has_lower_limit || upper_load_has_store_part) && |
| (store_has_upper_limit || lower_load_has_store_part)))) { |
| // This is the partial store-load forwarding case where a store |
| // has only part of the load's data and the load isn't LLSC or |
| // the load is LLSC and the store has all or part of the load's |
| // data |
| |
| // If it's already been written back, then don't worry about |
| // stalling on it. |
| if (storeQueue[store_idx].completed) { |
| panic("Should not check one of these"); |
| continue; |
| } |
| |
| // Must stall load and force it to retry, so long as it's the oldest |
| // load that needs to do so. |
| if (!stalled || |
| (stalled && |
| load_inst->seqNum < |
| loadQueue[stallingLoadIdx]->seqNum)) { |
| stalled = true; |
| stallingStoreIsn = storeQueue[store_idx].inst->seqNum; |
| stallingLoadIdx = load_idx; |
| } |
| |
| // Tell IQ/mem dep unit that this instruction will need to be |
| // rescheduled eventually |
| iewStage->rescheduleMemInst(load_inst); |
| load_inst->clearIssued(); |
| ++lsqRescheduledLoads; |
| |
| // Do not generate a writeback event as this instruction is not |
| // complete. |
| DPRINTF(LSQUnit, "Load-store forwarding mis-match. " |
| "Store idx %i to load addr %#x\n", |
| store_idx, req->getVaddr()); |
| |
| return NoFault; |
| } |
| } |
| |
| // If there's no forwarding case, then go access memory |
| DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n", |
| load_inst->seqNum, load_inst->pcState()); |
| |
| // Allocate memory if this is the first time a load is issued. |
| if (!load_inst->memData) { |
| load_inst->memData = new uint8_t[req->getSize()]; |
| } |
| |
| // if we the cache is not blocked, do cache access |
| bool completedFirst = false; |
| PacketPtr data_pkt = Packet::createRead(req); |
| PacketPtr fst_data_pkt = NULL; |
| PacketPtr snd_data_pkt = NULL; |
| |
| data_pkt->dataStatic(load_inst->memData); |
| |
| LSQSenderState *state = new LSQSenderState; |
| state->isLoad = true; |
| state->idx = load_idx; |
| state->inst = load_inst; |
| data_pkt->senderState = state; |
| |
| if (!TheISA::HasUnalignedMemAcc || !sreqLow) { |
| // Point the first packet at the main data packet. |
| fst_data_pkt = data_pkt; |
| } else { |
| // Create the split packets. |
| fst_data_pkt = Packet::createRead(sreqLow); |
| snd_data_pkt = Packet::createRead(sreqHigh); |
| |
| fst_data_pkt->dataStatic(load_inst->memData); |
| snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize()); |
| |
| fst_data_pkt->senderState = state; |
| snd_data_pkt->senderState = state; |
| |
| state->isSplit = true; |
| state->outstanding = 2; |
| state->mainPkt = data_pkt; |
| } |
| |
| // For now, load throughput is constrained by the number of |
| // load FUs only, and loads do not consume a cache port (only |
| // stores do). |
| // @todo We should account for cache port contention |
| // and arbitrate between loads and stores. |
| bool successful_load = true; |
| if (!dcachePort->sendTimingReq(fst_data_pkt)) { |
| successful_load = false; |
| } else if (TheISA::HasUnalignedMemAcc && sreqLow) { |
| completedFirst = true; |
| |
| // The first packet was sent without problems, so send this one |
| // too. If there is a problem with this packet then the whole |
| // load will be squashed, so indicate this to the state object. |
| // The first packet will return in completeDataAccess and be |
| // handled there. |
| // @todo We should also account for cache port contention |
| // here. |
| if (!dcachePort->sendTimingReq(snd_data_pkt)) { |
| // The main packet will be deleted in completeDataAccess. |
| state->complete(); |
| // Signify to 1st half that the 2nd half was blocked via state |
| state->cacheBlocked = true; |
| successful_load = false; |
| } |
| } |
| |
| // If the cache was blocked, or has become blocked due to the access, |
| // handle it. |
| if (!successful_load) { |
| if (!sreqLow) { |
| // Packet wasn't split, just delete main packet info |
| delete state; |
| delete data_pkt; |
| } |
| |
| if (TheISA::HasUnalignedMemAcc && sreqLow) { |
| if (!completedFirst) { |
| // Split packet, but first failed. Delete all state. |
| delete state; |
| delete data_pkt; |
| delete fst_data_pkt; |
| delete snd_data_pkt; |
| sreqLow.reset(); |
| sreqHigh.reset(); |
| } else { |
| // Can't delete main packet data or state because first packet |
| // was sent to the memory system |
| delete data_pkt; |
| delete snd_data_pkt; |
| sreqHigh.reset(); |
| } |
| } |
| |
| ++lsqCacheBlocked; |
| |
| iewStage->blockMemInst(load_inst); |
| |
| // No fault occurred, even though the interface is blocked. |
| return NoFault; |
| } |
| |
| return NoFault; |
| } |
| |
| template <class Impl> |
| Fault |
| LSQUnit<Impl>::write(const RequestPtr &req, |
| const RequestPtr &sreqLow, const RequestPtr &sreqHigh, |
| uint8_t *data, int store_idx) |
| { |
| assert(storeQueue[store_idx].inst); |
| |
| DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x" |
| " | storeHead:%i [sn:%i]\n", |
| store_idx, req->getPaddr(), storeHead, |
| storeQueue[store_idx].inst->seqNum); |
| |
| storeQueue[store_idx].req = req; |
| storeQueue[store_idx].sreqLow = sreqLow; |
| storeQueue[store_idx].sreqHigh = sreqHigh; |
| unsigned size = req->getSize(); |
| storeQueue[store_idx].size = size; |
| bool store_no_data = req->getFlags() & Request::STORE_NO_DATA; |
| storeQueue[store_idx].isAllZeros = store_no_data; |
| assert(size <= sizeof(storeQueue[store_idx].data) || store_no_data); |
| |
| // Split stores can only occur in ISAs with unaligned memory accesses. If |
| // a store request has been split, sreqLow and sreqHigh will be non-null. |
| if (TheISA::HasUnalignedMemAcc && sreqLow) { |
| storeQueue[store_idx].isSplit = true; |
| } |
| |
| if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO) && \ |
| !req->isCacheMaintenance()) |
| memcpy(storeQueue[store_idx].data, data, size); |
| |
| // This function only writes the data to the store queue, so no fault |
| // can happen here. |
| return NoFault; |
| } |
| |
| #endif // __CPU_O3_LSQ_UNIT_HH__ |