blob: 56b95a5b69111252e0716ad51e024904185aa95a [file] [log] [blame]
/*
* Copyright (c) 2011-2012, 2014 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2005-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Korey Sewell
*/
#ifndef __CPU_O3_LSQ_IMPL_HH__
#define __CPU_O3_LSQ_IMPL_HH__
#include <algorithm>
#include <list>
#include <string>
#include "cpu/o3/lsq.hh"
#include "debug/Drain.hh"
#include "debug/Fetch.hh"
#include "debug/LSQ.hh"
#include "debug/Writeback.hh"
#include "params/DerivO3CPU.hh"
using namespace std;
template <class Impl>
LSQ<Impl>::LSQ(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params)
: cpu(cpu_ptr), iewStage(iew_ptr),
LQEntries(params->LQEntries),
SQEntries(params->SQEntries),
numThreads(params->numThreads)
{
assert(numThreads > 0 && numThreads <= Impl::MaxThreads);
//**********************************************/
//************ Handle SMT Parameters ***********/
//**********************************************/
std::string policy = params->smtLSQPolicy;
//Convert string to lowercase
std::transform(policy.begin(), policy.end(), policy.begin(),
(int(*)(int)) tolower);
//Figure out fetch policy
if (policy == "dynamic") {
lsqPolicy = Dynamic;
maxLQEntries = LQEntries;
maxSQEntries = SQEntries;
DPRINTF(LSQ, "LSQ sharing policy set to Dynamic\n");
} else if (policy == "partitioned") {
lsqPolicy = Partitioned;
//@todo:make work if part_amt doesnt divide evenly.
maxLQEntries = LQEntries / numThreads;
maxSQEntries = SQEntries / numThreads;
DPRINTF(Fetch, "LSQ sharing policy set to Partitioned: "
"%i entries per LQ | %i entries per SQ\n",
maxLQEntries,maxSQEntries);
} else if (policy == "threshold") {
lsqPolicy = Threshold;
assert(params->smtLSQThreshold > LQEntries);
assert(params->smtLSQThreshold > SQEntries);
//Divide up by threshold amount
//@todo: Should threads check the max and the total
//amount of the LSQ
maxLQEntries = params->smtLSQThreshold;
maxSQEntries = params->smtLSQThreshold;
DPRINTF(LSQ, "LSQ sharing policy set to Threshold: "
"%i entries per LQ | %i entries per SQ\n",
maxLQEntries,maxSQEntries);
} else {
assert(0 && "Invalid LSQ Sharing Policy.Options Are:{Dynamic,"
"Partitioned, Threshold}");
}
//Initialize LSQs
thread = new LSQUnit[numThreads];
for (ThreadID tid = 0; tid < numThreads; tid++) {
thread[tid].init(cpu, iew_ptr, params, this,
maxLQEntries, maxSQEntries, tid);
thread[tid].setDcachePort(&cpu_ptr->getDataPort());
}
}
template<class Impl>
std::string
LSQ<Impl>::name() const
{
return iewStage->name() + ".lsq";
}
template<class Impl>
void
LSQ<Impl>::regStats()
{
//Initialize LSQs
for (ThreadID tid = 0; tid < numThreads; tid++) {
thread[tid].regStats();
}
}
template<class Impl>
void
LSQ<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
{
activeThreads = at_ptr;
assert(activeThreads != 0);
}
template <class Impl>
void
LSQ<Impl>::drainSanityCheck() const
{
assert(isDrained());
for (ThreadID tid = 0; tid < numThreads; tid++)
thread[tid].drainSanityCheck();
}
template <class Impl>
bool
LSQ<Impl>::isDrained() const
{
bool drained(true);
if (!lqEmpty()) {
DPRINTF(Drain, "Not drained, LQ not empty.\n");
drained = false;
}
if (!sqEmpty()) {
DPRINTF(Drain, "Not drained, SQ not empty.\n");
drained = false;
}
return drained;
}
template <class Impl>
void
LSQ<Impl>::takeOverFrom()
{
for (ThreadID tid = 0; tid < numThreads; tid++) {
thread[tid].takeOverFrom();
}
}
template <class Impl>
int
LSQ<Impl>::entryAmount(ThreadID num_threads)
{
if (lsqPolicy == Partitioned) {
return LQEntries / num_threads;
} else {
return 0;
}
}
template <class Impl>
void
LSQ<Impl>::resetEntries()
{
if (lsqPolicy != Dynamic || numThreads > 1) {
int active_threads = activeThreads->size();
int maxEntries;
if (lsqPolicy == Partitioned) {
maxEntries = LQEntries / active_threads;
} else if (lsqPolicy == Threshold && active_threads == 1) {
maxEntries = LQEntries;
} else {
maxEntries = LQEntries;
}
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
resizeEntries(maxEntries, tid);
}
}
}
template<class Impl>
void
LSQ<Impl>::removeEntries(ThreadID tid)
{
thread[tid].clearLQ();
thread[tid].clearSQ();
}
template<class Impl>
void
LSQ<Impl>::resizeEntries(unsigned size, ThreadID tid)
{
thread[tid].resizeLQ(size);
thread[tid].resizeSQ(size);
}
template<class Impl>
void
LSQ<Impl>::tick()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
thread[tid].tick();
}
}
template<class Impl>
void
LSQ<Impl>::insertLoad(DynInstPtr &load_inst)
{
ThreadID tid = load_inst->threadNumber;
thread[tid].insertLoad(load_inst);
}
template<class Impl>
void
LSQ<Impl>::insertStore(DynInstPtr &store_inst)
{
ThreadID tid = store_inst->threadNumber;
thread[tid].insertStore(store_inst);
}
template<class Impl>
Fault
LSQ<Impl>::executeLoad(DynInstPtr &inst)
{
ThreadID tid = inst->threadNumber;
return thread[tid].executeLoad(inst);
}
template<class Impl>
Fault
LSQ<Impl>::executeStore(DynInstPtr &inst)
{
ThreadID tid = inst->threadNumber;
return thread[tid].executeStore(inst);
}
template<class Impl>
void
LSQ<Impl>::writebackStores()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (numStoresToWB(tid) > 0) {
DPRINTF(Writeback,"[tid:%i] Writing back stores. %i stores "
"available for Writeback.\n", tid, numStoresToWB(tid));
}
thread[tid].writebackStores();
}
}
template<class Impl>
bool
LSQ<Impl>::violation()
{
/* Answers: Does Anybody Have a Violation?*/
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (thread[tid].violation())
return true;
}
return false;
}
template <class Impl>
void
LSQ<Impl>::recvReqRetry()
{
iewStage->cacheUnblocked();
for (ThreadID tid : *activeThreads) {
thread[tid].recvRetry();
}
}
template <class Impl>
bool
LSQ<Impl>::recvTimingResp(PacketPtr pkt)
{
if (pkt->isError())
DPRINTF(LSQ, "Got error packet back for address: %#X\n",
pkt->getAddr());
thread[cpu->contextToThread(pkt->req->contextId())]
.completeDataAccess(pkt);
if (pkt->isInvalidate()) {
// This response also contains an invalidate; e.g. this can be the case
// if cmd is ReadRespWithInvalidate.
//
// The calling order between completeDataAccess and checkSnoop matters.
// By calling checkSnoop after completeDataAccess, we ensure that the
// fault set by checkSnoop is not lost. Calling writeback (more
// specifically inst->completeAcc) in completeDataAccess overwrites
// fault, and in case this instruction requires squashing (as
// determined by checkSnoop), the ReExec fault set by checkSnoop would
// be lost otherwise.
DPRINTF(LSQ, "received invalidation with response for addr:%#x\n",
pkt->getAddr());
for (ThreadID tid = 0; tid < numThreads; tid++) {
thread[tid].checkSnoop(pkt);
}
}
delete pkt;
return true;
}
template <class Impl>
void
LSQ<Impl>::recvTimingSnoopReq(PacketPtr pkt)
{
DPRINTF(LSQ, "received pkt for addr:%#x %s\n", pkt->getAddr(),
pkt->cmdString());
// must be a snoop
if (pkt->isInvalidate()) {
DPRINTF(LSQ, "received invalidation for addr:%#x\n",
pkt->getAddr());
for (ThreadID tid = 0; tid < numThreads; tid++) {
thread[tid].checkSnoop(pkt);
}
}
}
template<class Impl>
int
LSQ<Impl>::getCount()
{
unsigned total = 0;
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
total += getCount(tid);
}
return total;
}
template<class Impl>
int
LSQ<Impl>::numLoads()
{
unsigned total = 0;
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
total += numLoads(tid);
}
return total;
}
template<class Impl>
int
LSQ<Impl>::numStores()
{
unsigned total = 0;
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
total += thread[tid].numStores();
}
return total;
}
template<class Impl>
unsigned
LSQ<Impl>::numFreeLoadEntries()
{
unsigned total = 0;
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
total += thread[tid].numFreeLoadEntries();
}
return total;
}
template<class Impl>
unsigned
LSQ<Impl>::numFreeStoreEntries()
{
unsigned total = 0;
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
total += thread[tid].numFreeStoreEntries();
}
return total;
}
template<class Impl>
unsigned
LSQ<Impl>::numFreeLoadEntries(ThreadID tid)
{
return thread[tid].numFreeLoadEntries();
}
template<class Impl>
unsigned
LSQ<Impl>::numFreeStoreEntries(ThreadID tid)
{
return thread[tid].numFreeStoreEntries();
}
template<class Impl>
bool
LSQ<Impl>::isFull()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (!(thread[tid].lqFull() || thread[tid].sqFull()))
return false;
}
return true;
}
template<class Impl>
bool
LSQ<Impl>::isFull(ThreadID tid)
{
//@todo: Change to Calculate All Entries for
//Dynamic Policy
if (lsqPolicy == Dynamic)
return isFull();
else
return thread[tid].lqFull() || thread[tid].sqFull();
}
template<class Impl>
bool
LSQ<Impl>::isEmpty() const
{
return lqEmpty() && sqEmpty();
}
template<class Impl>
bool
LSQ<Impl>::lqEmpty() const
{
list<ThreadID>::const_iterator threads = activeThreads->begin();
list<ThreadID>::const_iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (!thread[tid].lqEmpty())
return false;
}
return true;
}
template<class Impl>
bool
LSQ<Impl>::sqEmpty() const
{
list<ThreadID>::const_iterator threads = activeThreads->begin();
list<ThreadID>::const_iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (!thread[tid].sqEmpty())
return false;
}
return true;
}
template<class Impl>
bool
LSQ<Impl>::lqFull()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (!thread[tid].lqFull())
return false;
}
return true;
}
template<class Impl>
bool
LSQ<Impl>::lqFull(ThreadID tid)
{
//@todo: Change to Calculate All Entries for
//Dynamic Policy
if (lsqPolicy == Dynamic)
return lqFull();
else
return thread[tid].lqFull();
}
template<class Impl>
bool
LSQ<Impl>::sqFull()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (!sqFull(tid))
return false;
}
return true;
}
template<class Impl>
bool
LSQ<Impl>::sqFull(ThreadID tid)
{
//@todo: Change to Calculate All Entries for
//Dynamic Policy
if (lsqPolicy == Dynamic)
return sqFull();
else
return thread[tid].sqFull();
}
template<class Impl>
bool
LSQ<Impl>::isStalled()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (!thread[tid].isStalled())
return false;
}
return true;
}
template<class Impl>
bool
LSQ<Impl>::isStalled(ThreadID tid)
{
if (lsqPolicy == Dynamic)
return isStalled();
else
return thread[tid].isStalled();
}
template<class Impl>
bool
LSQ<Impl>::hasStoresToWB()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (hasStoresToWB(tid))
return true;
}
return false;
}
template<class Impl>
bool
LSQ<Impl>::willWB()
{
list<ThreadID>::iterator threads = activeThreads->begin();
list<ThreadID>::iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
if (willWB(tid))
return true;
}
return false;
}
template<class Impl>
void
LSQ<Impl>::dumpInsts() const
{
list<ThreadID>::const_iterator threads = activeThreads->begin();
list<ThreadID>::const_iterator end = activeThreads->end();
while (threads != end) {
ThreadID tid = *threads++;
thread[tid].dumpInsts();
}
}
#endif//__CPU_O3_LSQ_IMPL_HH__