| /* |
| * Copyright (c) 2004-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef __CPU_BASE_DYN_INST_HH__ |
| #define __CPU_BASE_DYN_INST_HH__ |
| |
| #include <list> |
| #include <string> |
| |
| #include "base/fast_alloc.hh" |
| #include "base/trace.hh" |
| #include "config/full_system.hh" |
| #include "cpu/exetrace.hh" |
| #include "cpu/inst_seq.hh" |
| #include "cpu/static_inst.hh" |
| #include "encumbered/cpu/full/op_class.hh" |
| #include "mem/functional/memory_control.hh" |
| #include "sim/system.hh" |
| /* |
| #include "encumbered/cpu/full/bpred_update.hh" |
| #include "encumbered/cpu/full/spec_memory.hh" |
| #include "encumbered/cpu/full/spec_state.hh" |
| #include "encumbered/mem/functional/main.hh" |
| */ |
| |
| /** |
| * @file |
| * Defines a dynamic instruction context. |
| */ |
| |
| // Forward declaration. |
| class StaticInstPtr; |
| |
| template <class Impl> |
| class BaseDynInst : public FastAlloc, public RefCounted |
| { |
| public: |
| // Typedef for the CPU. |
| typedef typename Impl::FullCPU FullCPU; |
| typedef typename FullCPU::ImplState ImplState; |
| |
| // Binary machine instruction type. |
| typedef TheISA::MachInst MachInst; |
| // Extended machine instruction type |
| typedef TheISA::ExtMachInst ExtMachInst; |
| // Logical register index type. |
| typedef TheISA::RegIndex RegIndex; |
| // Integer register index type. |
| typedef TheISA::IntReg IntReg; |
| |
| // The DynInstPtr type. |
| typedef typename Impl::DynInstPtr DynInstPtr; |
| |
| // The list of instructions iterator type. |
| typedef typename std::list<DynInstPtr>::iterator ListIt; |
| |
| enum { |
| MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs |
| MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs |
| }; |
| |
| /** The StaticInst used by this BaseDynInst. */ |
| StaticInstPtr staticInst; |
| |
| //////////////////////////////////////////// |
| // |
| // INSTRUCTION EXECUTION |
| // |
| //////////////////////////////////////////// |
| /** InstRecord that tracks this instructions. */ |
| Trace::InstRecord *traceData; |
| |
| /** |
| * Does a read to a given address. |
| * @param addr The address to read. |
| * @param data The read's data is written into this parameter. |
| * @param flags The request's flags. |
| * @return Returns any fault due to the read. |
| */ |
| template <class T> |
| Fault read(Addr addr, T &data, unsigned flags); |
| |
| /** |
| * Does a write to a given address. |
| * @param data The data to be written. |
| * @param addr The address to write to. |
| * @param flags The request's flags. |
| * @param res The result of the write (for load locked/store conditionals). |
| * @return Returns any fault due to the write. |
| */ |
| template <class T> |
| Fault write(T data, Addr addr, unsigned flags, |
| uint64_t *res); |
| |
| void prefetch(Addr addr, unsigned flags); |
| void writeHint(Addr addr, int size, unsigned flags); |
| Fault copySrcTranslate(Addr src); |
| Fault copy(Addr dest); |
| |
| /** @todo: Consider making this private. */ |
| public: |
| /** The sequence number of the instruction. */ |
| InstSeqNum seqNum; |
| |
| enum Status { |
| IqEntry, /// Instruction is in the IQ |
| RobEntry, /// Instruction is in the ROB |
| LsqEntry, /// Instruction is in the LSQ |
| Completed, /// Instruction has completed |
| ResultReady, /// Instruction has its result |
| CanIssue, /// Instruction can issue and execute |
| Issued, /// Instruction has issued |
| Executed, /// Instruction has executed |
| CanCommit, /// Instruction can commit |
| AtCommit, /// Instruction has reached commit |
| Committed, /// Instruction has committed |
| Squashed, /// Instruction is squashed |
| SquashedInIQ, /// Instruction is squashed in the IQ |
| SquashedInLSQ, /// Instruction is squashed in the LSQ |
| SquashedInROB, /// Instruction is squashed in the ROB |
| RecoverInst, /// Is a recover instruction |
| BlockingInst, /// Is a blocking instruction |
| ThreadsyncWait, /// Is a thread synchronization instruction |
| SerializeBefore, /// Needs to serialize on |
| /// instructions ahead of it |
| SerializeAfter, /// Needs to serialize instructions behind it |
| SerializeHandled, /// Serialization has been handled |
| NumStatus |
| }; |
| |
| /** The status of this BaseDynInst. Several bits can be set. */ |
| std::bitset<NumStatus> status; |
| |
| /** The thread this instruction is from. */ |
| short threadNumber; |
| |
| /** data address space ID, for loads & stores. */ |
| short asid; |
| |
| /** How many source registers are ready. */ |
| unsigned readyRegs; |
| |
| /** Pointer to the FullCPU object. */ |
| FullCPU *cpu; |
| |
| /** Pointer to the exec context. */ |
| ImplState *thread; |
| |
| /** The kind of fault this instruction has generated. */ |
| Fault fault; |
| |
| /** The memory request. */ |
| MemReqPtr req; |
| |
| /** The effective virtual address (lds & stores only). */ |
| Addr effAddr; |
| |
| /** The effective physical address. */ |
| Addr physEffAddr; |
| |
| /** Effective virtual address for a copy source. */ |
| Addr copySrcEffAddr; |
| |
| /** Effective physical address for a copy source. */ |
| Addr copySrcPhysEffAddr; |
| |
| /** The memory request flags (from translation). */ |
| unsigned memReqFlags; |
| |
| /** The size of the data to be stored. */ |
| int storeSize; |
| |
| /** The data to be stored. */ |
| IntReg storeData; |
| |
| union Result { |
| uint64_t integer; |
| // float fp; |
| double dbl; |
| }; |
| |
| /** The result of the instruction; assumes for now that there's only one |
| * destination register. |
| */ |
| Result instResult; |
| |
| /** PC of this instruction. */ |
| Addr PC; |
| |
| /** Next non-speculative PC. It is not filled in at fetch, but rather |
| * once the target of the branch is truly known (either decode or |
| * execute). |
| */ |
| Addr nextPC; |
| |
| /** Predicted next PC. */ |
| Addr predPC; |
| |
| /** Count of total number of dynamic instructions. */ |
| static int instcount; |
| |
| #ifdef DEBUG |
| void dumpSNList(); |
| #endif |
| |
| /** Whether or not the source register is ready. |
| * @todo: Not sure this should be here vs the derived class. |
| */ |
| bool _readySrcRegIdx[MaxInstSrcRegs]; |
| |
| public: |
| /** BaseDynInst constructor given a binary instruction. |
| * @param inst The binary instruction. |
| * @param PC The PC of the instruction. |
| * @param pred_PC The predicted next PC. |
| * @param seq_num The sequence number of the instruction. |
| * @param cpu Pointer to the instruction's CPU. |
| */ |
| BaseDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num, |
| FullCPU *cpu); |
| |
| /** BaseDynInst constructor given a StaticInst pointer. |
| * @param _staticInst The StaticInst for this BaseDynInst. |
| */ |
| BaseDynInst(StaticInstPtr &_staticInst); |
| |
| /** BaseDynInst destructor. */ |
| ~BaseDynInst(); |
| |
| private: |
| /** Function to initialize variables in the constructors. */ |
| void initVars(); |
| |
| public: |
| /** |
| * @todo: Make this function work; currently it is a dummy function. |
| * @param fault Last fault. |
| * @param cmd Last command. |
| * @param addr Virtual address of access. |
| * @param p Memory accessed. |
| * @param nbytes Access size. |
| */ |
| void |
| trace_mem(Fault fault, |
| MemCmd cmd, |
| Addr addr, |
| void *p, |
| int nbytes); |
| |
| /** Dumps out contents of this BaseDynInst. */ |
| void dump(); |
| |
| /** Dumps out contents of this BaseDynInst into given string. */ |
| void dump(std::string &outstring); |
| |
| /** Returns the fault type. */ |
| Fault getFault() { return fault; } |
| |
| /** Checks whether or not this instruction has had its branch target |
| * calculated yet. For now it is not utilized and is hacked to be |
| * always false. |
| * @todo: Actually use this instruction. |
| */ |
| bool doneTargCalc() { return false; } |
| |
| /** Returns the next PC. This could be the speculative next PC if it is |
| * called prior to the actual branch target being calculated. |
| */ |
| Addr readNextPC() { return nextPC; } |
| |
| /** Set the predicted target of this current instruction. */ |
| void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; } |
| |
| /** Returns the predicted target of the branch. */ |
| Addr readPredTarg() { return predPC; } |
| |
| /** Returns whether the instruction was predicted taken or not. */ |
| bool predTaken() { return predPC != (PC + sizeof(MachInst)); } |
| |
| /** Returns whether the instruction mispredicted. */ |
| bool mispredicted() { return predPC != nextPC; } |
| |
| // |
| // Instruction types. Forward checks to StaticInst object. |
| // |
| bool isNop() const { return staticInst->isNop(); } |
| bool isMemRef() const { return staticInst->isMemRef(); } |
| bool isLoad() const { return staticInst->isLoad(); } |
| bool isStore() const { return staticInst->isStore(); } |
| bool isStoreConditional() const |
| { return staticInst->isStoreConditional(); } |
| bool isInstPrefetch() const { return staticInst->isInstPrefetch(); } |
| bool isDataPrefetch() const { return staticInst->isDataPrefetch(); } |
| bool isCopy() const { return staticInst->isCopy(); } |
| bool isInteger() const { return staticInst->isInteger(); } |
| bool isFloating() const { return staticInst->isFloating(); } |
| bool isControl() const { return staticInst->isControl(); } |
| bool isCall() const { return staticInst->isCall(); } |
| bool isReturn() const { return staticInst->isReturn(); } |
| bool isDirectCtrl() const { return staticInst->isDirectCtrl(); } |
| bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); } |
| bool isCondCtrl() const { return staticInst->isCondCtrl(); } |
| bool isUncondCtrl() const { return staticInst->isUncondCtrl(); } |
| bool isThreadSync() const { return staticInst->isThreadSync(); } |
| bool isSerializing() const { return staticInst->isSerializing(); } |
| bool isSerializeBefore() const |
| { return staticInst->isSerializeBefore() || status[SerializeBefore]; } |
| bool isSerializeAfter() const |
| { return staticInst->isSerializeAfter() || status[SerializeAfter]; } |
| bool isMemBarrier() const { return staticInst->isMemBarrier(); } |
| bool isWriteBarrier() const { return staticInst->isWriteBarrier(); } |
| bool isNonSpeculative() const { return staticInst->isNonSpeculative(); } |
| bool isQuiesce() const { return staticInst->isQuiesce(); } |
| bool isIprAccess() const { return staticInst->isIprAccess(); } |
| bool isUnverifiable() const { return staticInst->isUnverifiable(); } |
| |
| /** Temporarily sets this instruction as a serialize before instruction. */ |
| void setSerializeBefore() { status.set(SerializeBefore); } |
| |
| /** Clears the serializeBefore part of this instruction. */ |
| void clearSerializeBefore() { status.reset(SerializeBefore); } |
| |
| /** Checks if this serializeBefore is only temporarily set. */ |
| bool isTempSerializeBefore() { return status[SerializeBefore]; } |
| |
| /** Temporarily sets this instruction as a serialize after instruction. */ |
| void setSerializeAfter() { status.set(SerializeAfter); } |
| |
| /** Clears the serializeAfter part of this instruction.*/ |
| void clearSerializeAfter() { status.reset(SerializeAfter); } |
| |
| /** Checks if this serializeAfter is only temporarily set. */ |
| bool isTempSerializeAfter() { return status[SerializeAfter]; } |
| |
| /** Sets the serialization part of this instruction as handled. */ |
| void setSerializeHandled() { status.set(SerializeHandled); } |
| |
| /** Checks if the serialization part of this instruction has been |
| * handled. This does not apply to the temporary serializing |
| * state; it only applies to this instruction's own permanent |
| * serializing state. |
| */ |
| bool isSerializeHandled() { return status[SerializeHandled]; } |
| |
| /** Returns the opclass of this instruction. */ |
| OpClass opClass() const { return staticInst->opClass(); } |
| |
| /** Returns the branch target address. */ |
| Addr branchTarget() const { return staticInst->branchTarget(PC); } |
| |
| /** Returns the number of source registers. */ |
| int8_t numSrcRegs() const { return staticInst->numSrcRegs(); } |
| |
| /** Returns the number of destination registers. */ |
| int8_t numDestRegs() const { return staticInst->numDestRegs(); } |
| |
| // the following are used to track physical register usage |
| // for machines with separate int & FP reg files |
| int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); } |
| int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); } |
| |
| /** Returns the logical register index of the i'th destination register. */ |
| RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); } |
| |
| /** Returns the logical register index of the i'th source register. */ |
| RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); } |
| |
| /** Returns the result of an integer instruction. */ |
| uint64_t readIntResult() { return instResult.integer; } |
| |
| /** Returns the result of a floating point instruction. */ |
| float readFloatResult() { return (float)instResult.dbl; } |
| |
| /** Returns the result of a floating point (double) instruction. */ |
| double readDoubleResult() { return instResult.dbl; } |
| |
| void setIntReg(const StaticInst *si, int idx, uint64_t val) |
| { |
| instResult.integer = val; |
| } |
| |
| void setFloatRegSingle(const StaticInst *si, int idx, float val) |
| { |
| // instResult.fp = val; |
| instResult.dbl = (double)val; |
| } |
| |
| void setFloatRegDouble(const StaticInst *si, int idx, double val) |
| { |
| instResult.dbl = val; |
| } |
| |
| void setFloatRegInt(const StaticInst *si, int idx, uint64_t val) |
| { |
| instResult.integer = val; |
| } |
| |
| /** Records that one of the source registers is ready. */ |
| void markSrcRegReady(); |
| |
| /** Marks a specific register as ready. */ |
| void markSrcRegReady(RegIndex src_idx); |
| |
| /** Returns if a source register is ready. */ |
| bool isReadySrcRegIdx(int idx) const |
| { |
| return this->_readySrcRegIdx[idx]; |
| } |
| |
| /** Sets this instruction as completed. */ |
| void setCompleted() { status.set(Completed); } |
| |
| /** Returns whether or not this instruction is completed. */ |
| bool isCompleted() const { return status[Completed]; } |
| |
| /** Marks the result as ready. */ |
| void setResultReady() { status.set(ResultReady); } |
| |
| /** Returns whether or not the result is ready. */ |
| bool isResultReady() const { return status[ResultReady]; } |
| |
| /** Sets this instruction as ready to issue. */ |
| void setCanIssue() { status.set(CanIssue); } |
| |
| /** Returns whether or not this instruction is ready to issue. */ |
| bool readyToIssue() const { return status[CanIssue]; } |
| |
| /** Sets this instruction as issued from the IQ. */ |
| void setIssued() { status.set(Issued); } |
| |
| /** Returns whether or not this instruction has issued. */ |
| bool isIssued() const { return status[Issued]; } |
| |
| /** Sets this instruction as executed. */ |
| void setExecuted() { status.set(Executed); } |
| |
| /** Returns whether or not this instruction has executed. */ |
| bool isExecuted() const { return status[Executed]; } |
| |
| /** Sets this instruction as ready to commit. */ |
| void setCanCommit() { status.set(CanCommit); } |
| |
| /** Clears this instruction as being ready to commit. */ |
| void clearCanCommit() { status.reset(CanCommit); } |
| |
| /** Returns whether or not this instruction is ready to commit. */ |
| bool readyToCommit() const { return status[CanCommit]; } |
| |
| void setAtCommit() { status.set(AtCommit); } |
| |
| bool isAtCommit() { return status[AtCommit]; } |
| |
| /** Sets this instruction as committed. */ |
| void setCommitted() { status.set(Committed); } |
| |
| /** Returns whether or not this instruction is committed. */ |
| bool isCommitted() const { return status[Committed]; } |
| |
| /** Sets this instruction as squashed. */ |
| void setSquashed() { status.set(Squashed); } |
| |
| /** Returns whether or not this instruction is squashed. */ |
| bool isSquashed() const { return status[Squashed]; } |
| |
| //Instruction Queue Entry |
| //----------------------- |
| /** Sets this instruction as a entry the IQ. */ |
| void setInIQ() { status.set(IqEntry); } |
| |
| /** Sets this instruction as a entry the IQ. */ |
| void clearInIQ() { status.reset(IqEntry); } |
| |
| /** Returns whether or not this instruction has issued. */ |
| bool isInIQ() const { return status[IqEntry]; } |
| |
| /** Sets this instruction as squashed in the IQ. */ |
| void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);} |
| |
| /** Returns whether or not this instruction is squashed in the IQ. */ |
| bool isSquashedInIQ() const { return status[SquashedInIQ]; } |
| |
| |
| //Load / Store Queue Functions |
| //----------------------- |
| /** Sets this instruction as a entry the LSQ. */ |
| void setInLSQ() { status.set(LsqEntry); } |
| |
| /** Sets this instruction as a entry the LSQ. */ |
| void removeInLSQ() { status.reset(LsqEntry); } |
| |
| /** Returns whether or not this instruction is in the LSQ. */ |
| bool isInLSQ() const { return status[LsqEntry]; } |
| |
| /** Sets this instruction as squashed in the LSQ. */ |
| void setSquashedInLSQ() { status.set(SquashedInLSQ);} |
| |
| /** Returns whether or not this instruction is squashed in the LSQ. */ |
| bool isSquashedInLSQ() const { return status[SquashedInLSQ]; } |
| |
| |
| //Reorder Buffer Functions |
| //----------------------- |
| /** Sets this instruction as a entry the ROB. */ |
| void setInROB() { status.set(RobEntry); } |
| |
| /** Sets this instruction as a entry the ROB. */ |
| void clearInROB() { status.reset(RobEntry); } |
| |
| /** Returns whether or not this instruction is in the ROB. */ |
| bool isInROB() const { return status[RobEntry]; } |
| |
| /** Sets this instruction as squashed in the ROB. */ |
| void setSquashedInROB() { status.set(SquashedInROB); } |
| |
| /** Returns whether or not this instruction is squashed in the ROB. */ |
| bool isSquashedInROB() const { return status[SquashedInROB]; } |
| |
| /** Read the PC of this instruction. */ |
| const Addr readPC() const { return PC; } |
| |
| /** Set the next PC of this instruction (its actual target). */ |
| void setNextPC(uint64_t val) |
| { |
| nextPC = val; |
| // instResult.integer = val; |
| } |
| |
| void setASID(short addr_space_id) { asid = addr_space_id; } |
| |
| void setThread(unsigned tid) { threadNumber = tid; } |
| |
| void setState(ImplState *state) { thread = state; } |
| |
| /** Returns the exec context. |
| * @todo: Remove this once the ExecContext is no longer used. |
| */ |
| ExecContext *xcBase() { return thread->getXCProxy(); } |
| |
| private: |
| /** Instruction effective address. |
| * @todo: Consider if this is necessary or not. |
| */ |
| Addr instEffAddr; |
| |
| /** Whether or not the effective address calculation is completed. |
| * @todo: Consider if this is necessary or not. |
| */ |
| bool eaCalcDone; |
| |
| public: |
| /** Sets the effective address. */ |
| void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; } |
| |
| /** Returns the effective address. */ |
| const Addr &getEA() const { return req->vaddr; } |
| |
| /** Returns whether or not the eff. addr. calculation has been completed. */ |
| bool doneEACalc() { return eaCalcDone; } |
| |
| /** Returns whether or not the eff. addr. source registers are ready. */ |
| bool eaSrcsReady(); |
| |
| /** Whether or not the memory operation is done. */ |
| bool memOpDone; |
| |
| public: |
| /** Load queue index. */ |
| int16_t lqIdx; |
| |
| /** Store queue index. */ |
| int16_t sqIdx; |
| |
| /** Iterator pointing to this BaseDynInst in the list of all insts. */ |
| ListIt instListIt; |
| |
| /** Returns iterator to this instruction in the list of all insts. */ |
| ListIt &getInstListIt() { return instListIt; } |
| |
| /** Sets iterator for this instruction in the list of all insts. */ |
| void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; } |
| }; |
| |
| template<class Impl> |
| template<class T> |
| inline Fault |
| BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags) |
| { |
| if (status[Executed]) { |
| fault = cpu->read(req, data, lqIdx); |
| return fault; |
| } |
| |
| req = new MemReq(addr, thread->getXCProxy(), sizeof(T), flags); |
| req->asid = asid; |
| req->thread_num = threadNumber; |
| req->pc = this->PC; |
| |
| if ((req->vaddr & (TheISA::VMPageSize - 1)) + req->size > |
| TheISA::VMPageSize) { |
| return TheISA::genAlignmentFault(); |
| } |
| |
| fault = cpu->translateDataReadReq(req); |
| |
| effAddr = req->vaddr; |
| physEffAddr = req->paddr; |
| memReqFlags = req->flags; |
| |
| if (fault == NoFault) { |
| #if FULL_SYSTEM |
| if (cpu->system->memctrl->badaddr(physEffAddr)) { |
| fault = TheISA::genMachineCheckFault(); |
| data = (T)-1; |
| this->setExecuted(); |
| } else { |
| fault = cpu->read(req, data, lqIdx); |
| } |
| #else |
| fault = cpu->read(req, data, lqIdx); |
| #endif |
| } else { |
| // Return a fixed value to keep simulation deterministic even |
| // along misspeculated paths. |
| data = (T)-1; |
| |
| // Commit will have to clean up whatever happened. Set this |
| // instruction as executed. |
| this->setExecuted(); |
| } |
| |
| if (traceData) { |
| traceData->setAddr(addr); |
| traceData->setData(data); |
| } |
| |
| return fault; |
| } |
| |
| template<class Impl> |
| template<class T> |
| inline Fault |
| BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res) |
| { |
| if (traceData) { |
| traceData->setAddr(addr); |
| traceData->setData(data); |
| } |
| |
| req = new MemReq(addr, thread->getXCProxy(), sizeof(T), flags); |
| |
| req->asid = asid; |
| req->thread_num = threadNumber; |
| req->pc = this->PC; |
| |
| if ((req->vaddr & (TheISA::VMPageSize - 1)) + req->size > |
| TheISA::VMPageSize) { |
| return TheISA::genAlignmentFault(); |
| } |
| |
| fault = cpu->translateDataWriteReq(req); |
| |
| effAddr = req->vaddr; |
| physEffAddr = req->paddr; |
| memReqFlags = req->flags; |
| |
| if (fault == NoFault) { |
| #if FULL_SYSTEM |
| if (cpu->system->memctrl->badaddr(physEffAddr)) { |
| fault = TheISA::genMachineCheckFault(); |
| } else { |
| fault = cpu->write(req, data, sqIdx); |
| } |
| #else |
| fault = cpu->write(req, data, sqIdx); |
| #endif |
| } |
| |
| if (res) { |
| // always return some result to keep misspeculated paths |
| // (which will ignore faults) deterministic |
| *res = (fault == NoFault) ? req->result : 0; |
| } |
| |
| return fault; |
| } |
| |
| #endif // __CPU_BASE_DYN_INST_HH__ |