blob: 61c40540325a1dd7e00e8f010e9114ae0facecf6 [file] [log] [blame]
#include "stdlib.h"
#include "util.h"
#include "dataset.h"
#define REG_I 8
#define REG_J 2
//#define BLOCK_I 32
#define BLOCK_J 16
#define BLOCK_K 16
#define LDA 32
#define NCORES 2
#define MIN(X,Y) (X < Y ? X : Y)
void __attribute__((noinline)) matmul(const int coreid, const int ncores, const int lda, const data_t A[], const data_t B[], data_t C[] )
{
// ***************************** //
// **** ADD YOUR CODE HERE ***** //
// ***************************** //
//
// feel free to make a separate function for MI and MSI versions.
int i, j, k, ri, rj, ii, jj, kk;
data_t *Aj, *Cj, *Bi;
data_t c[REG_I][REG_J], a[REG_J], b[REG_I];
size_t start = coreid * (LDA / NCORES), end = (coreid == NCORES - 1 ? LDA : (coreid + 1) * (LDA / NCORES));
/* if (coreid > 0) { */
/* return; */
/* } */
/* start = 0, end = lda; */
if (ncores == NCORES && lda == LDA) {
for (jj = start; jj < end; jj += BLOCK_J)
for (kk = 0; kk < LDA; kk += BLOCK_K)
//for (ii = 0; ii < LDA; ii += BLOCK_I)
for (j = jj; j < MIN(end, jj + BLOCK_J); j += REG_J) {
Aj = A + j*LDA;
Cj = C + j*LDA;
for (i = 0; i < LDA; i += REG_I) {
/* Load C in register blocks. */
Bi = B + i;
for (ri = 0; ri < REG_I; ri++) {
for (rj = 0; rj < REG_J; rj++) {
c[ri][rj] = Cj[i + ri + ( rj)*LDA];
}
}
for (k = kk; k < MIN(LDA, kk + BLOCK_K); k++) {
/* Load a,b in register blocks. */
/* for (rj = 0; rj < REG_J; rj++) {
a[rj] = A[(j + rj)*LDA + k];
}*/
/* for (ri = 0; ri < REG_I; ri++) { */
/* b[ri] = Bi[k*LDA + ri]; */
/* } */
/* /\* Compute C in register blocks. *\/ */
/* for (rj = 0; rj < REG_J; rj++) { */
/* a[rj] = Aj[( rj)*LDA + k]; */
/* for (ri = 0; ri < REG_I; ri++) { */
/* c[ri][rj] += a[rj] * b[ri]; */
/* } */
/* } */
a[0] = Aj[k];
a[1] = Aj[k + LDA];
b[0] = Bi[k*LDA];
b[1] = Bi[k*LDA + 1];
b[2] = Bi[k*LDA + 2];
b[3] = Bi[k*LDA + 3];
b[4] = Bi[k*LDA + 4];
b[5] = Bi[k*LDA + 5];
b[6] = Bi[k*LDA + 6];
b[7] = Bi[k*LDA + 7];
c[0][0] += b[0] * a[0];
c[0][1] += b[0] * a[1];
c[1][0] += b[1] * a[0];
c[1][1] += b[1] * a[1];
c[2][0] += b[2] * a[0];
c[2][1] += b[2] * a[1];
c[3][0] += b[3] * a[0];
c[3][1] += b[3] * a[1];
c[4][0] += b[4] * a[0];
c[4][1] += b[4] * a[1];
c[5][0] += b[5] * a[0];
c[5][1] += b[5] * a[1];
c[6][0] += b[6] * a[0];
c[6][1] += b[6] * a[1];
c[7][0] += b[7] * a[0];
c[7][1] += b[7] * a[1];
/* c[0][0] += b[0] * a[0]; */
/* c[1][1] += b[1] * a[1]; */
/* c[2][0] += b[2] * a[0]; */
/* c[3][1] += b[3] * a[1]; */
/* c[4][0] += b[4] * a[0]; */
/* c[5][1] += b[5] * a[1]; */
/* c[6][0] += b[6] * a[0]; */
/* c[7][1] += b[7] * a[1]; */
/* c[0][0] += b[0] * a[0]; */
/* c[1][1] += b[1] * a[1]; */
/* c[2][0] += b[2] * a[0]; */
/* c[3][1] += b[3] * a[1]; */
/* c[4][0] += b[4] * a[0]; */
/* c[5][1] += b[5] * a[1]; */
/* c[6][0] += b[6] * a[0]; */
/* c[7][1] += b[7] * a[1]; */
}
/* store C in register blocks. */
for (ri = 0; ri < REG_I; ri++) {
for (rj = 0; rj < REG_J; rj++) {
Cj[i + ri + (rj)*LDA] = c[ri][rj];
}
}
}
}
/* We only care about performance for 32x32 matrices and 2 cores. Otherwise just naive mat_mul */
} else {
if (coreid > 0)
return;
for ( i = 0; i < lda; i++ )
for ( j = 0; j < lda; j++ )
for ( k = 0; k < lda; k++ )
C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
}
}