blob: 261c4f46c00b43672174e3636485e4f3c484d7c5 [file] [log] [blame]
/* Convert colours in various ways.
*
* Written: January 1990
* Modified .. innumerable times
* Code by: DS, JC, J-Ph.L.
* 18/7/93 JC
* - final tidies before v7 release
* - ANSIfied
* - code for samples removed
* 5/5/94 JC
* - nint() -> rint() to make ANSI easier
* 14/3/96 JC
* - new display characterisation
* - speed-up to im_col_XYZ2rgb() and im_col_rgb2XYZ()
* 4/3/98 JC
* - new display profile for ultra2
* - new sRGB profile
* 17/8/98 JC
* - error_exit() removed, now clips
* 26/11/03 Andrey Kiselev
* - tiny clean-up for calcul_tables()
* - some reformatting
* 23/7/07
* - tiny cleanup for make_hI() prevents cond jump on ui in valgrind
* 14/3/08
* - more tiny cond jump valgrind fixes
* 23/10/09
* - gtkdoc comments
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <vips/vips.h>
#include <vips/internal.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/* Have the tables been made?
*/
static int made_ucs_tables = 0;
/* Arrays for lookup tables.
*/
static float LI[ 1001 ];
static float CI[ 3001 ];
static float hI[ 101 ][ 361 ];
/**
* im_col_ab2Ch:
* @a: CIE a* value
* @b: CIE b* value
* @C: return Chroma
* @h: return Hue angle (degrees)
*
* Calculate Ch from ab, h in degrees.
*/
void
im_col_ab2Ch( float a, float b, float *C, float *h )
{
float in[3], out[3];
in[1] = a;
in[2] = b;
imb_Lab2LCh( in, out, 1 );
*C = out[1];
*h = out[2];
}
/**
* im_col_Ch2ab:
* @C: Chroma
* @h: Hue angle (degrees)
* @a: return CIE a* value
* @b: return CIE b* value
*
* Calculate ab from Ch, h in degrees.
*/
void
im_col_Ch2ab( float C, float h, float *a, float *b )
{
float in[3], out[3];
in[1] = C;
in[2] = h;
imb_LCh2Lab( in, out, 1 );
*a = out[1];
*b = out[2];
}
/**
* im_col_XYZ2Lab:
* @X: Input CIE XYZ colour
* @Y:
* @Z:
* @L: return CIE Lab value
* @a:
* @b:
*
* Calculate Lab from XYZ, D65.
*
* See also: im_XYZ2Lab_temp().
*/
void
im_col_XYZ2Lab( float X, float Y, float Z, float *L, float *a, float *b )
{
float in[3], out[3];
im_colour_temperature temp;
in[0] = X;
in[1] = Y;
in[2] = Z;
temp.X0 = IM_D65_X0;
temp.Y0 = IM_D65_Y0;
temp.Z0 = IM_D65_Z0;
imb_XYZ2Lab( in, out, 1, &temp );
*L = out[0];
*a = out[1];
*b = out[2];
}
/**
* im_col_Lab2XYZ:
* @L: Input CIE Lab value
* @a:
* @b:
* @X: Return CIE XYZ colour
* @Y:
* @Z:
*
* Calculate XYZ from Lab, D65.
*
* See also: im_Lab2XYZ_temp().
*/
void
im_col_Lab2XYZ( float L, float a, float b, float *X, float *Y, float *Z )
{
float in[3], out[3];
im_colour_temperature temp;
in[0] = L;
in[1] = a;
in[2] = b;
temp.X0 = IM_D65_X0;
temp.Y0 = IM_D65_Y0;
temp.Z0 = IM_D65_Z0;
imb_Lab2XYZ( in, out, 1, &temp );
*X = out[0];
*Y = out[1];
*Z = out[2];
}
/**
* im_col_pythagoras:
* @L1: Input coordinate 1
* @a1:
* @b1:
* @L2: Input coordinate 2
* @a2:
* @b2:
*
* Pythagorean distance between two points in colour space. Lab/XYZ/UCS etc.
*/
float
im_col_pythagoras( float L1, float a1, float b1, float L2, float a2, float b2 )
{
float dL = L1 - L2;
float da = a1 - a2;
float db = b1 - b2;
return( sqrt( dL*dL + da*da + db*db ) );
}
/* Functions to convert from Lab to uniform colour space and back.
*/
/* Constants for Lucs.
*/
#define c1 21.75
#define c2 0.3838
#define c3 38.54
/**
* im_col_L2Lucs:
* @L: CIE L*
*
* Calculate Lucs from L.
*
* Returns: Lucs
*/
float
im_col_L2Lucs( float L )
{
float Lucs;
if( L >= 16.0 )
Lucs = (c1 * log( L ) + c2 * L - c3);
else
Lucs = 1.744 * L;
return( Lucs );
}
/* Generate Ll and LI (inverse) tables. Don't call the above for speed.
*/
static void
make_LI( void )
{
int i, j=0;
float L, Ll[ 1001 ];
for( i = 0; i < 1001; i++ )
{
L = i / 10.0;
if( L >= 16.0 )
Ll[ i ] = (c1 * log( L ) + c2 * L - c3);
else
Ll[ i ] = 1.744 * L;
}
for( i = 0; i < 1001; i++ )
{
while ( (Ll[j]<=i/10.0) && ( j<1001) ) j++;
LI[i] = (j-1)/10.0 + (i/10.0-Ll[j-1]) / ((Ll[j]-Ll[j-1])*10.0);
}
}
/**
* im_col_Lucs2L:
* @L: L ucs
*
* Calculate L from Lucs using a table. Call im_col_make_tables_UCS() at
* least once before using this function.
*
* Returns: L*
*/
float
im_col_Lucs2L( float Lucs )
{
int known; /* nearest input value in the table, <= Lucs */
known = floor(Lucs*10.0);
if( known < 0 )
known = 0;
if( known > 1000 )
known = 1000;
return( LI[known] + (LI[known+1]-LI[known])*(Lucs*10.0-known) );
}
/* Constants for Cucs.
*/
#define c4 0.162
#define c5 10.92
#define c6 0.638
#define c7 0.07216
#define c8 4.907
/**
* im_col_C2Cucs:
* @C: Chroma
*
* Calculate Cucs from C.
*
* Returns: Cucs.
*/
float
im_col_C2Cucs( float C )
{
float Cucs;
Cucs = (c4 * C + c5 * (log( c6 + c7 * C )) + c8);
if ( Cucs<0 ) Cucs = 0;
return( Cucs );
}
/* Generate Cucs table. Again, inline the code above.
*/
static void
make_CI( void )
{
int i;
float C;
float Cl[3001];
for( i = 0; i < 3001; i++ ) {
C = i / 10.0;
Cl[i] = (c4 * C + c5 * (log( c6 + c7 * C )) + c8);
}
for( i = 0; i < 3001; i++ ) {
int j;
for( j = 0; j < 3001 && Cl[j] <= i / 10.0; j++ )
;
CI[i] = (j - 1) / 10.0 +
(i / 10.0 - Cl[j - 1]) / ((Cl[j] - Cl[j - 1]) * 10.0);
}
}
/**
* im_col_Cucs2C:
* @Cucs: Cucs
*
* Calculate C from Cucs using a table.
* Call im_col_make_tables_UCS() at
* least once before using this function.
*
* Returns: C.
*/
float
im_col_Cucs2C( float Cucs )
{
int known; /* nearest input value in the table, <= Cucs */
known = floor(Cucs*10.0);
if( known < 0 )
known = 0;
if( known > 3000 )
known = 3000;
return( CI[known] + (CI[known+1]-CI[known])*(Cucs*10.0-known) );
}
/**
* im_col_Ch2hucs:
* @C: Chroma
* @h: Hue (degrees)
*
* Calculate hucs from C and h.
*
* Returns: hucs.
*/
float
im_col_Ch2hucs( float C, float h )
{
float P, D, f, g;
float k4, k5, k6, k7, k8;
float hucs;
if( h < 49.1 ) {
k4 = 133.87;
k5 = -134.5;
k6 = -.924;
k7 = 1.727;
k8 = 340.0;
}
else if( h < 110.1 ) {
k4 = 11.78;
k5 = -12.7;
k6 = -.218;
k7 = 2.12;
k8 = 333.0;
}
else if( h < 269.6 ) {
k4 = 13.87;
k5 = 10.93;
k6 = 0.14;
k7 = 1.0;
k8 = -83.0;
}
else {
k4 = .14;
k5 = 5.23;
k6 = .17;
k7 = 1.61;
k8 = 233.0;
}
P = cos( IM_RAD( k8 + k7 * h ) );
D = k4 + k5 * P * pow( fabs( P ), k6 );
g = C * C * C * C;
f = sqrt( g / (g + 1900.0) );
hucs = h + D * f;
return( hucs );
}
/* The difficult one: hucs. Again, inline.
*/
static void
make_hI( void )
{
int i, j, k;
float P, D, C, f, hl[101][361];
float k4, k5, k6, k7, k8;
for( i = 0; i < 361; i++ ) {
if( i < 49.1 ) {
k4 = 133.87;
k5 = -134.5;
k6 = -.924;
k7 = 1.727;
k8 = 340.0;
}
else if( i < 110.1 ) {
k4 = 11.78;
k5 = -12.7;
k6 = -.218;
k7 = 2.12;
k8 = 333.0;
}
else if( i < 269.6 ) {
k4 = 13.87;
k5 = 10.93;
k6 = 0.14;
k7 = 1.0;
k8 = -83.0;
}
else {
k4 = .14;
k5 = 5.23;
k6 = .17;
k7 = 1.61;
k8 = 233.0;
}
P = cos( IM_RAD( k8 + k7 * i ) );
D = k4 + k5 * P * pow( fabs( P ), k6 );
for( j = 0; j < 101; j++ ) {
float g;
C = j * 2.0;
g = C * C * C * C;
f = sqrt( g / (g + 1900.0) );
hl[j][i] = i + D * f;
}
}
for( j = 0; j < 101; j++ ) {
k = 0;
for( i = 0; i < 361; i++ ) {
while( k < 361 && hl[j][k] <= i )
k++;
hI[j][i] = k - 1 + (i - hl[j][k - 1]) /
(hl[j][k] - hl[j][k - 1]);
}
}
}
/**
* im_col_Chucs2h:
* @C: Chroma
* @hucs: Hue ucs (degrees)
*
* Calculate h from C and hucs, using a table.
* Call im_col_make_tables_UCS() at
* least once before using this function.
*
* Returns: h.
*/
float
im_col_Chucs2h( float C, float hucs )
{
int r, known; /* nearest input value in the table, <= hucs */
/* Which row of the table?
*/
r = (int) ((C + 1.0) / 2.0);
if( r < 0 )
r = 0;
if( r > 100 )
r = 100;
known = floor( hucs );
if( known < 0 )
known = 0;
if( known > 360 )
known = 360;
return( hI[r][known] +
(hI[r][(known + 1) % 360] - hI[r][known]) * (hucs - known) );
}
/**
* im_col_make_tables_UCS:
*
* Make the lookup tables for ucs.
*/
void
im_col_make_tables_UCS( void )
{
if( !made_ucs_tables ) {
make_LI();
make_CI();
make_hI();
made_ucs_tables = -1;
}
}
/**
* im_col_dECMC:
* @L1: Input coordinate 1
* @a1:
* @b1:
* @L2: Input coordinate 2
* @a2:
* @b2:
*
* CMC colour difference from a pair of Lab values.
*
* Returns: CMC(1:1) colour difference
*/
float
im_col_dECMC( float L1, float a1, float b1,
float L2, float a2, float b2 )
{
float h1, C1;
float h2, C2;
float Lucs1, Cucs1, hucs1;
float Lucs2, Cucs2, hucs2;
float aucs1, bucs1;
float aucs2, bucs2;
/* Turn to LCh.
*/
im_col_ab2Ch( a1, b1, &C1, &h1 );
im_col_ab2Ch( a2, b2, &C2, &h2 );
/* Turn to LCh in CMC space.
*/
Lucs1 = im_col_L2Lucs( L1 );
Cucs1 = im_col_C2Cucs( C1 );
hucs1 = im_col_Ch2hucs( C1, h1 );
Lucs2 = im_col_L2Lucs( L2 );
Cucs2 = im_col_C2Cucs( C2 );
hucs2 = im_col_Ch2hucs( C2, h2 );
/* Turn to Lab in CMC space.
*/
im_col_Ch2ab( Cucs1, hucs1, &aucs1, &bucs1 );
im_col_Ch2ab( Cucs2, hucs2, &aucs2, &bucs2 );
/* Find difference.
*/
return( im_col_pythagoras( Lucs1, aucs1, bucs1, Lucs2, aucs2, bucs2 ) );
}
/**
* im_col_ab2h:
* @a: CIE a
* @b: CIE b
*
* Returns: Hue (degrees)
*/
double
im_col_ab2h( double a, double b )
{
double h;
/* We have to be careful we have the right quadrant!
*/
if( a == 0 ) {
if( b < 0.0 )
h = 270;
else if( b == 0.0 )
h = 0;
else
h = 90;
}
else {
double t = atan( b / a );
if( a > 0.0 )
if( b < 0.0 )
h = IM_DEG( t + IM_PI * 2.0 );
else
h = IM_DEG( t );
else
h = IM_DEG( t + IM_PI );
}
return( h );
}
/**
* im_col_dE00:
* @L1: Input coordinate 1
* @a1:
* @b1:
* @L2: Input coordinate 2
* @a2:
* @b2:
*
* CIEDE2000, from:
*
* Luo, Cui, Rigg, "The Development of the CIE 2000 Colour-Difference
* Formula: CIEDE2000", COLOR research and application, pp 340
*
* Returns: CIE dE2000 colour difference.
*/
float
im_col_dE00( float L1, float a1, float b1,
float L2, float a2, float b2 )
{
/* Code if you want XYZ params and the colour temp used in the reference
float
im_col_dE00( float X1, float Y1, float Z1,
float X2, float Y2, float Z2 )
{
const double X0 = 94.811;
const double Y0 = 100.0;
const double Z0 = 107.304;
#define f(I) ((I) > 0.008856 ? \
cbrt( (I), 1.0 / 3.0 ) : 7.7871 * (I) + (16.0 / 116.0))
double nX1 = f( X1 / X0 );
double nY1 = f( Y1 / Y0 );
double nZ1 = f( Z1 / Z0 );
double L1 = 116 * nY1 - 16;
double a1 = 500 * (nX1 - nY1);
double b1 = 200 * (nY1 - nZ1);
double nX2 = f( X2 / X0 );
double nY2 = f( Y2 / Y0 );
double nZ2 = f( Z2 / Z0 );
double L2 = 116 * nY2 - 16;
double a2 = 500 * (nX2 - nY2);
double b2 = 200 * (nY2 - nZ2);
*/
/* Chroma and mean chroma (C bar)
*/
double C1 = sqrt( a1 * a1 + b1 * b1 );
double C2 = sqrt( a2 * a2 + b2 * b2 );
double Cb = (C1 + C2) / 2;
/* G
*/
double Cb7 = Cb * Cb * Cb * Cb * Cb * Cb * Cb;
double G = 0.5 * (1 - sqrt( Cb7 / (Cb7 + pow( 25, 7 )) ));
/* L', a', b', C', h'
*/
double L1d = L1;
double a1d = (1 + G) * a1;
double b1d = b1;
double C1d = sqrt( a1d * a1d + b1d * b1d );
double h1d = im_col_ab2h( a1d, b1d );
double L2d = L2;
double a2d = (1 + G) * a2;
double b2d = b2;
double C2d = sqrt( a2d * a2d + b2d * b2d );
double h2d = im_col_ab2h( a2d, b2d );
/* L' bar, C' bar, h' bar
*/
double Ldb = (L1d + L2d) / 2;
double Cdb = (C1d + C2d) / 2;
double hdb = fabs( h1d - h2d ) < 180 ?
(h1d + h2d) / 2 :
fabs( h1d + h2d - 360 ) / 2;
/* dtheta, RC
*/
double hdbd = (hdb - 275) / 25;
double dtheta = 30 * exp( -(hdbd * hdbd) );
double Cdb7 = Cdb * Cdb * Cdb * Cdb * Cdb * Cdb * Cdb;
double RC = 2 * sqrt( Cdb7 / (Cdb7 + pow( 25, 7 )) );
/* RT, T.
*/
double RT = -sin( IM_RAD( 2 * dtheta ) ) * RC;
double T = 1 -
0.17 * cos( IM_RAD( hdb - 30 ) ) +
0.24 * cos( IM_RAD( 2 * hdb ) ) +
0.32 * cos( IM_RAD( 3 * hdb + 6 ) ) -
0.20 * cos( IM_RAD( 4 * hdb - 63 ) );
/* SL, SC, SH
*/
double Ldb50 = Ldb - 50;
double SL = 1 + (0.015 * Ldb50 * Ldb50) / sqrt( 20 + Ldb50 * Ldb50);
double SC = 1 + 0.045 * Cdb;
double SH = 1 + 0.015 * Cdb * T;
/* hue difference ... careful!
*/
double dhd = fabs( h1d - h2d ) < 180 ?
h1d - h2d :
360 - (h1d - h2d);
/* dLd, dCd dHd
*/
double dLd = L1d - L2d;
double dCd = C1d - C2d;
double dHd = 2 * sqrt( C1d * C2d ) * sin( IM_RAD( dhd / 2 ) );
/* Parametric factors for viewing parameters.
*/
const double kL = 1.0;
const double kC = 1.0;
const double kH = 1.0;
/* Normalised terms.
*/
double nL = dLd / (kL * SL);
double nC = dCd / (kC * SC);
double nH = dHd / (kH * SH);
/* dE00!!
*/
double dE00 = sqrt( nL * nL + nC * nC + nH * nH + RT * nC * nH );
/*
printf( "X1 = %g, Y1 = %g, Z1 = %g\n", X1, Y1, Z1 );
printf( "X2 = %g, Y2 = %g, Z2 = %g\n", X2, Y2, Z2 );
printf( "L1 = %g, a1 = %g, b1 = %g\n", L1, a1, b1 );
printf( "L2 = %g, a2 = %g, b2 = %g\n", L2, a2, b2 );
printf( "L1d = %g, a1d = %g, b1d = %g, C1d = %g, h1d = %g\n",
L1d, a1d, b1d, C1d, h1d );
printf( "L2d = %g, a2d = %g, b2d = %g, C2d = %g, h2d = %g\n",
L2d, a2d, b2d, C2d, h2d );
printf( "G = %g, T = %g, SL = %g, SC = %g, SH = %g, RT = %g\n",
G, T, SL, SC, SH, RT );
printf( "dE00 = %g\n", dE00 );
*/
return( dE00 );
}