blob: 9ef8c33a5dee7034490ebd81d71cdd61904e0095 [file] [log] [blame]
/* im_invfftr
*
* Modified on :
* 27/2/03 JC
* - from im_invfft.c
* 22/1/04 JC
* - oops, fix for segv on wider than high fftw transforms
* 3/11/04
* - added fftw3 support
* 7/2/10
* - gtkdoc
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <math.h>
#ifdef HAVE_FFTW
#include <rfftw.h>
#endif /*HAVE_FFTW*/
#ifdef HAVE_FFTW3
#include <fftw3.h>
#endif /*HAVE_FFTW3*/
#include <vips/vips.h>
#include <vips/internal.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
#ifdef HAVE_FFTW
/* Use fftw2.
*/
static int
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
IMAGE *cmplx = im_open_local( dummy, "invfft1-1", "t" );
IMAGE *real = im_open_local( out, "invfft1-2", "t" );
const int half_width = in->Xsize / 2 + 1;
/* Transform to halfcomplex here.
*/
double *half_complex = IM_ARRAY( dummy,
in->Ysize * half_width * 2, double );
rfftwnd_plan plan;
int x, y;
double *q, *p;
if( !cmplx || !real || !half_complex || im_pincheck( in ) ||
im_poutcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
im_error( "im_invfft", _( "one band uncoded only" ) );
return( -1 );
}
/* Make dp complex image for input.
*/
if( im_clip2fmt( in, cmplx, IM_BANDFMT_DPCOMPLEX ) )
return( -1 );
/* Make mem buffer real image for output.
*/
if( im_cp_desc( real, in ) )
return( -1 );
real->BandFmt = IM_BANDFMT_DOUBLE;
if( im_setupout( real ) )
return( -1 );
/* Build half-complex image.
*/
q = half_complex;
for( y = 0; y < cmplx->Ysize; y++ ) {
p = ((double *) cmplx->data) + y * in->Xsize * 2;
for( x = 0; x < half_width; x++ ) {
q[0] = p[0];
q[1] = p[1];
p += 2;
q += 2;
}
}
/* Make the plan for the transform. Yes, they really do use nx for
* height and ny for width.
*/
if( !(plan = rfftw2d_create_plan( in->Ysize, in->Xsize,
FFTW_BACKWARD, FFTW_MEASURE | FFTW_USE_WISDOM )) ) {
im_error( "im_invfft", _( "unable to create transform plan" ) );
return( -1 );
}
rfftwnd_one_complex_to_real( plan,
(fftw_complex *) half_complex, (fftw_real *) real->data );
rfftwnd_destroy_plan( plan );
/* Copy to out.
*/
if( im_copy( real, out ) )
return( -1 );
return( 0 );
}
#else /*!HAVE_FFTW*/
#ifdef HAVE_FFTW3
/* Complex to real inverse transform.
*/
static int
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
IMAGE *cmplx = im_open_local( dummy, "invfft1-1", "t" );
IMAGE *real = im_open_local( out, "invfft1-2", "t" );
const int half_width = in->Xsize / 2 + 1;
/* Transform to halfcomplex here.
*/
double *half_complex = IM_ARRAY( dummy,
in->Ysize * half_width * 2, double );
/* We have to have a separate real buffer for the planner to work on.
*/
double *planner_scratch = IM_ARRAY( dummy,
in->Ysize * half_width * 2, double );
fftw_plan plan;
int x, y;
double *q, *p;
if( !cmplx || !real || !half_complex || im_pincheck( in ) ||
im_poutcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE || in->Bands != 1 ) {
im_error( "im_invfft",
"%s", _( "one band uncoded only" ) );
return( -1 );
}
/* Make dp complex image for input.
*/
if( im_clip2fmt( in, cmplx, IM_BANDFMT_DPCOMPLEX ) )
return( -1 );
/* Make mem buffer real image for output.
*/
if( im_cp_desc( real, in ) )
return( -1 );
real->BandFmt = IM_BANDFMT_DOUBLE;
if( im_setupout( real ) )
return( -1 );
/* Build half-complex image.
*/
q = half_complex;
for( y = 0; y < cmplx->Ysize; y++ ) {
p = ((double *) cmplx->data) + y * in->Xsize * 2;
for( x = 0; x < half_width; x++ ) {
q[0] = p[0];
q[1] = p[1];
p += 2;
q += 2;
}
}
/* Make the plan for the transform. Yes, they really do use nx for
* height and ny for width.
*/
if( !(plan = fftw_plan_dft_c2r_2d( in->Ysize, in->Xsize,
(fftw_complex *) planner_scratch, (double *) real->data,
0 )) ) {
im_error( "im_invfft",
"%s", _( "unable to create transform plan" ) );
return( -1 );
}
fftw_execute_dft_c2r( plan,
(fftw_complex *) half_complex, (double *) real->data );
fftw_destroy_plan( plan );
/* Copy to out.
*/
if( im_copy( real, out ) )
return( -1 );
return( 0 );
}
#else /*!HAVE_FFTW3*/
/* Fall back to vips's built-in fft.
*/
static int
invfft1( IMAGE *dummy, IMAGE *in, IMAGE *out )
{
int bpx = im_ispoweroftwo( in->Xsize );
int bpy = im_ispoweroftwo( in->Ysize );
float *buf, *q, *p1;
int x, y;
/* Buffers for real and imaginary parts.
*/
IMAGE *real = im_open_local( dummy, "invfft1:1", "t" );
IMAGE *imag = im_open_local( dummy, "invfft1:2", "t" );
/* Temps.
*/
IMAGE *t1 = im_open_local( dummy, "invfft1:3", "p" );
IMAGE *t2 = im_open_local( dummy, "invfft1:4", "p" );
if( !real || !imag || !t1 )
return( -1 );
if( im_pincheck( in ) || im_outcheck( out ) )
return( -1 );
if( in->Coding != IM_CODING_NONE ||
in->Bands != 1 || !im_iscomplex( in ) ) {
im_error( "im_invfft",
"%s", _( "one band complex uncoded only" ) );
return( -1 );
}
if( !bpx || !bpy ) {
im_error( "im_invfft",
"%s", _( "sides must be power of 2" ) );
return( -1 );
}
/* Make sure we have a single-precision complex input image.
*/
if( im_clip2fmt( in, t1, IM_BANDFMT_COMPLEX ) )
return( -1 );
/* Extract real and imag parts. We have to complement the imaginary.
*/
if( im_c2real( t1, real ) )
return( -1 );
if( im_c2imag( t1, t2 ) || im_lintra( -1.0, t2, 0.0, imag ) )
return( -1 );
/* Transform!
*/
if( im__fft_sp( (float *) real->data, (float *) imag->data,
bpx - 1, bpy - 1 ) ) {
im_error( "im_invfft",
"%s", _( "fft_sp failed" ) );
return( -1 );
}
/* WIO to out.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->BandFmt = IM_BANDFMT_FLOAT;
if( im_setupout( out ) )
return( -1 );
if( !(buf = (float *) IM_ARRAY( dummy,
IM_IMAGE_SIZEOF_LINE( out ), PEL )) )
return( -1 );
/* Just write real part.
*/
for( p1 = (float *) real->data, y = 0; y < out->Ysize; y++ ) {
q = buf;
for( x = 0; x < out->Xsize; x++ ) {
q[x] = *p1++;
}
if( im_writeline( y, out, (PEL *) buf ) )
return( -1 );
}
return( 0 );
}
#endif /*HAVE_FFTW3*/
#endif /*HAVE_FFTW*/
/**
* im_invfftr:
* @in: input image
* @out: output image
*
* Transform an image from Fourier space to real space, giving a real result.
* This is faster than im_invfft(), which gives a complex result.
*
* VIPS uses the fftw3 or fftw2 Fourier transform libraries if possible. If
* they were not available when VIPS was built, it falls back to it's own
* FFT functions which are slow and only work for square images whose sides
* are a power of two.
*
* See also: im_invfft(), im_fwfft(), im_disp_ps().
*
* Returns: 0 on success, -1 on error.
*/
int
im_invfftr( IMAGE *in, IMAGE *out )
{
IMAGE *dummy = im_open( "im_invfft:1", "p" );
if( !dummy )
return( -1 );
if( im__fftproc( dummy, in, out, invfft1 ) ) {
im_close( dummy );
return( -1 );
}
im_close( dummy );
if( out->Bands == 1 )
out->Type = IM_TYPE_B_W;
else
out->Type = IM_TYPE_MULTIBAND;
return( 0 );
}