blob: f7dcab136aca4e9de66e844708d498d0782fdce7 [file] [log] [blame]
/* im_blend.c --- blend images with a condition image
*
* Modified:
* 15/4/05
* - from im_ifthenelse()
* 8/7/05
* - oops, broken for some combinations of band differences (thanks Joe)
* 23/9/09
* - gtkdoc comments
* - use im_check*()
* - allow many-band conditional and single-band a/b
* - allow a/b to differ in format and bands
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <vips/vips.h>
#include <vips/internal.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
#define iblend1( TYPE ) { \
TYPE *a = (TYPE *) ap; \
TYPE *b = (TYPE *) bp; \
TYPE *q = (TYPE *) qp; \
\
for( i = 0, x = 0; x < n; i++, x += bands ) { \
const int v = c[i]; \
\
for( z = x; z < x + bands; z++ ) \
q[z] = (v * a[z] + (255 - v) * b[z] + 128) / 255; \
} \
}
#define iblendn( TYPE ) { \
TYPE *a = (TYPE *) ap; \
TYPE *b = (TYPE *) bp; \
TYPE *q = (TYPE *) qp; \
\
for( x = 0; x < n; x += bands ) { \
for( z = x; z < x + bands; z++ ) { \
const int v = c[z]; \
\
q[z] = (v * a[z] + (255 - v) * b[z] + 128) / 255; \
} \
} \
}
#define fblend1( TYPE ) { \
TYPE *a = (TYPE *) ap; \
TYPE *b = (TYPE *) bp; \
TYPE *q = (TYPE *) qp; \
\
for( i = 0, x = 0; x < n; i++, x += bands ) { \
const double v = c[i] / 255.0; \
\
for( z = x; z < x + bands; z++ ) \
q[z] = v * a[z] + (1.0 - v) * b[z]; \
} \
}
#define fblendn( TYPE ) { \
TYPE *a = (TYPE *) ap; \
TYPE *b = (TYPE *) bp; \
TYPE *q = (TYPE *) qp; \
\
for( x = 0; x < n; x += bands ) { \
for( z = x; z < x + bands; z++ ) { \
const double v = c[z] / 255.0; \
\
q[z] = v * a[z] + (1.0 - v) * b[z]; \
} \
} \
}
#define cblend1( TYPE ) { \
TYPE *a = (TYPE *) ap; \
TYPE *b = (TYPE *) bp; \
TYPE *q = (TYPE *) qp; \
\
for( i = 0, x = 0; x < n; i++, x += bands ) { \
const double v = c[i] / 255.0; \
\
for( z = x; z < x + 2 * bands; z++ ) \
q[z] = v * a[z] + (1.0 - v) * b[z]; \
} \
}
#define cblendn( TYPE ) { \
TYPE *a = (TYPE *) ap; \
TYPE *b = (TYPE *) bp; \
TYPE *q = (TYPE *) qp; \
\
for( x = 0; x < n; x += bands ) { \
for( z = x; z < x + bands; z++ ) { \
const double v = c[z] / 255.0; \
\
q[2 * z] = v * a[2 * z] + (1.0 - v) * b[2 * z]; \
q[2 * z + 1] = v * a[2 * z + 1] + \
(1.0 - v) * b[2 * z + 1]; \
} \
} \
}
/* Blend with a 1-band conditional image.
*/
static void
blend1_buffer( PEL *qp, PEL *c, PEL *ap, PEL *bp, int width, IMAGE *im )
{
int i, x, z;
const int bands = im->Bands;
const int n = width * bands;
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR:
iblend1( unsigned char ); break;
case IM_BANDFMT_CHAR:
iblend1( signed char ); break;
case IM_BANDFMT_USHORT:
iblend1( unsigned short ); break;
case IM_BANDFMT_SHORT:
iblend1( signed short ); break;
case IM_BANDFMT_UINT:
iblend1( unsigned int ); break;
case IM_BANDFMT_INT:
iblend1( signed int ); break;
case IM_BANDFMT_FLOAT:
fblend1( float ); break;
case IM_BANDFMT_DOUBLE:
fblend1( double ); break;
case IM_BANDFMT_COMPLEX:
cblend1( float ); break;
case IM_BANDFMT_DPCOMPLEX:
cblend1( double ); break;
default:
g_assert( 0 );
}
}
/* Blend with a many band conditional image.
*/
static void
blendn_buffer( PEL *qp, PEL *c, PEL *ap, PEL *bp, int width, IMAGE *im )
{
int x, z;
const int bands = im->Bands;
const int n = width * bands;
switch( im->BandFmt ) {
case IM_BANDFMT_UCHAR:
iblendn( unsigned char ); break;
case IM_BANDFMT_CHAR:
iblendn( signed char ); break;
case IM_BANDFMT_USHORT:
iblendn( unsigned short ); break;
case IM_BANDFMT_SHORT:
iblendn( signed short ); break;
case IM_BANDFMT_UINT:
iblendn( unsigned int ); break;
case IM_BANDFMT_INT:
iblendn( signed int ); break;
case IM_BANDFMT_FLOAT:
fblendn( float ); break;
case IM_BANDFMT_DOUBLE:
fblendn( double ); break;
case IM_BANDFMT_COMPLEX:
cblendn( float ); break;
case IM_BANDFMT_DPCOMPLEX:
cblendn( double ); break;
default:
g_assert( 0 );
}
}
static int
blend_gen( REGION *or, void *seq, void *client1, void *client2 )
{
REGION **ir = (REGION **) seq;
Rect *r = &or->valid;
int le = r->left;
int to = r->top;
int bo = IM_RECT_BOTTOM(r);
IMAGE *c = ir[0]->im;
IMAGE *a = ir[1]->im;
int c_elements = r->width * c->Bands;
int x, y;
int all0, all255;
/* Ask for condition pixels.
*/
if( im_prepare( ir[0], r ) )
return( -1 );
/* Is the conditional all zero or all non-zero? We can avoid asking
* for one of the inputs to be calculated.
*/
all0 = *((PEL *) IM_REGION_ADDR( ir[0], le, to )) == 0;
all255 = *((PEL *) IM_REGION_ADDR( ir[0], le, to )) == 255;
for( y = to; y < bo; y++ ) {
PEL *p = (PEL *) IM_REGION_ADDR( ir[0], le, y );
for( x = 0; x < c_elements; x++ ) {
all0 &= p[x] == 0;
all255 &= p[x] == 255;
}
if( !all0 && !all255 )
break;
}
if( all255 ) {
/* All 255. Point or at the then image.
*/
if( im_prepare( ir[1], r ) ||
im_region_region( or, ir[1], r, r->left, r->top ) )
return( -1 );
}
else if( all0 ) {
/* All zero. Point or at the else image.
*/
if( im_prepare( ir[2], r ) ||
im_region_region( or, ir[2], r, r->left, r->top ) )
return( -1 );
}
else {
/* Mix of set and clear ... ask for both then and else parts and
* interleave.
*/
if( im_prepare( ir[1], r ) || im_prepare( ir[2], r ) )
return( -1 );
for( y = to; y < bo; y++ ) {
PEL *cp = (PEL *) IM_REGION_ADDR( ir[0], le, y );
PEL *ap = (PEL *) IM_REGION_ADDR( ir[1], le, y );
PEL *bp = (PEL *) IM_REGION_ADDR( ir[2], le, y );
PEL *q = (PEL *) IM_REGION_ADDR( or, le, y );
if( c->Bands == 1 )
blend1_buffer( q, cp, ap, bp, r->width, a );
else
blendn_buffer( q, cp, ap, bp, r->width, a );
}
}
return( 0 );
}
static int
blend( IMAGE *c, IMAGE *a, IMAGE *b, IMAGE *out )
{
IMAGE **in;
/* Check args.
*/
if( im_check_uncoded( "im_blend", c ) ||
im_check_uncoded( "im_blend", a ) ||
im_check_uncoded( "im_blend", b ) ||
im_check_format( "im_blend", c, IM_BANDFMT_UCHAR ) ||
im_check_format_same( "im_blend", a, b ) ||
im_check_bands_same( "im_blend", a, b ) ||
im_check_bands_1orn( "im_blend", c, a ) ||
im_piocheck( c, out ) ||
im_pincheck( a ) ||
im_pincheck( b ) )
return( -1 );
/* Make output image.
*/
if( im_cp_descv( out, a, b, c, NULL ) )
return( -1 );
out->Bands = IM_MAX( c->Bands, a->Bands );
if( im_demand_hint( out, IM_THINSTRIP, a, b, c, NULL ) )
return( -1 );
if( !(in = im_allocate_input_array( out, c, a, b, NULL )) ||
im_generate( out,
im_start_many, blend_gen, im_stop_many, in, NULL ) )
return( -1 );
return( 0 );
}
/**
* im_blend:
* @c: condition #IMAGE
* @a: then #IMAGE
* @b: else #IMAGE
* @out: output #IMAGE
*
* This operation scans the condition image @c (which must be unsigned char)
* and uses it to blend pixels from either the then image @a or the else
* image @b. 255 means @a only, 0 means @b only, and intermediate values are a
* mixture.
*
* Any image can have either 1 band or n bands, where n is the same for all
* the non-1-band images. Single band images are then effectively copied to
* make n-band images.
*
* Images @a and @b are cast up to the smallest common format.
*
* Images @a and @b must match exactly in size.
*
* See also: im_ifthenelse(), im_equal().
*
* Returns: 0 on success, -1 on error
*/
int
im_blend( IMAGE *c, IMAGE *a, IMAGE *b, IMAGE *out )
{
/* If a and b are both LABPACK, repack agan after the blend.
*/
const int repack = a->Coding == IM_CODING_LABQ &&
b->Coding == IM_CODING_LABQ;
IMAGE *t[7];
if( im_open_local_array( out, t, 7, "im_blend", "p" ) )
return( -1 );
/* Unpack LABPACK as a courtesy.
*/
if( a->Coding == IM_CODING_LABQ ) {
if( im_LabQ2Lab( a, t[0] ) )
return( -1 );
a = t[0];
}
if( b->Coding == IM_CODING_LABQ ) {
if( im_LabQ2Lab( b, t[1] ) )
return( -1 );
b = t[1];
}
/* Make a and b match in bands and format.
*/
if( im__formatalike( a, b, t[2], t[3] ) ||
im__bandalike( t[2], t[3], t[4], t[5] ) )
return( -1 );
if( blend( c, t[4], t[5], t[6] ) )
return( -1 );
if( repack ) {
if( im_Lab2LabQ( t[6], out ) )
return( -1 );
}
else {
if( im_copy( t[6], out ) )
return( -1 );
}
return( 0 );
}