blob: c8405fc3242a5db29be5a32b7eb37d7dbeda2134 [file] [log] [blame]
/*****************************************************************************
* common.h: h264 encoder
*****************************************************************************
* Copyright (C) 2003-2008 x264 project
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
#ifndef X264_COMMON_H
#define X264_COMMON_H
/****************************************************************************
* Macros
****************************************************************************/
#define X264_MIN(a,b) ( (a)<(b) ? (a) : (b) )
#define X264_MAX(a,b) ( (a)>(b) ? (a) : (b) )
#define X264_MIN3(a,b,c) X264_MIN((a),X264_MIN((b),(c)))
#define X264_MAX3(a,b,c) X264_MAX((a),X264_MAX((b),(c)))
#define X264_MIN4(a,b,c,d) X264_MIN((a),X264_MIN3((b),(c),(d)))
#define X264_MAX4(a,b,c,d) X264_MAX((a),X264_MAX3((b),(c),(d)))
#define XCHG(type,a,b) do{ type t = a; a = b; b = t; } while(0)
#define FIX8(f) ((int)(f*(1<<8)+.5))
#define CHECKED_MALLOC( var, size )\
{\
var = x264_malloc( size );\
if( !var )\
{\
x264_log( h, X264_LOG_ERROR, "malloc failed\n" );\
goto fail;\
}\
}
#define X264_BFRAME_MAX 16
#define X264_THREAD_MAX 128
#define X264_SLICE_MAX 4
#define X264_NAL_MAX (4 + X264_SLICE_MAX)
#define X264_PCM_COST (386*8)
// number of pixels (per thread) in progress at any given time.
// 16 for the macroblock in progress + 3 for deblocking + 3 for motion compensation filter + 2 for extra safety
#define X264_THREAD_HEIGHT 24
/****************************************************************************
* Includes
****************************************************************************/
#include "osdep.h"
#include <stdarg.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "x264.h"
#include "bs.h"
#include "set.h"
#include "predict.h"
#include "pixel.h"
#include "mc.h"
#include "frame.h"
#include "dct.h"
#include "cabac.h"
#include "quant.h"
/****************************************************************************
* Generals functions
****************************************************************************/
/* x264_malloc : will do or emulate a memalign
* you have to use x264_free for buffers allocated with x264_malloc */
void *x264_malloc( int );
void *x264_realloc( void *p, int i_size );
void x264_free( void * );
/* x264_slurp_file: malloc space for the whole file and read it */
char *x264_slurp_file( const char *filename );
/* mdate: return the current date in microsecond */
int64_t x264_mdate( void );
/* x264_param2string: return a (malloced) string containing most of
* the encoding options */
char *x264_param2string( x264_param_t *p, int b_res );
/* log */
void x264_log( x264_t *h, int i_level, const char *psz_fmt, ... );
void x264_reduce_fraction( int *n, int *d );
static inline uint8_t x264_clip_uint8( int x )
{
return x&(~255) ? (-x)>>31 : x;
}
static inline int x264_clip3( int v, int i_min, int i_max )
{
return ( (v < i_min) ? i_min : (v > i_max) ? i_max : v );
}
static inline double x264_clip3f( double v, double f_min, double f_max )
{
return ( (v < f_min) ? f_min : (v > f_max) ? f_max : v );
}
static inline int x264_median( int a, int b, int c )
{
int t = (a-b)&((a-b)>>31);
a -= t;
b += t;
b -= (b-c)&((b-c)>>31);
b += (a-b)&((a-b)>>31);
return b;
}
static inline void x264_median_mv( int16_t *dst, int16_t *a, int16_t *b, int16_t *c )
{
dst[0] = x264_median( a[0], b[0], c[0] );
dst[1] = x264_median( a[1], b[1], c[1] );
}
static inline int x264_predictor_difference( int16_t (*mvc)[2], intptr_t i_mvc )
{
int sum = 0, i;
for( i = 0; i < i_mvc-1; i++ )
{
sum += abs( mvc[i][0] - mvc[i+1][0] )
+ abs( mvc[i][1] - mvc[i+1][1] );
}
return sum;
}
/****************************************************************************
*
****************************************************************************/
enum slice_type_e
{
SLICE_TYPE_P = 0,
SLICE_TYPE_B = 1,
SLICE_TYPE_I = 2,
SLICE_TYPE_SP = 3,
SLICE_TYPE_SI = 4
};
static const char slice_type_to_char[] = { 'P', 'B', 'I', 'S', 'S' };
typedef struct
{
x264_sps_t *sps;
x264_pps_t *pps;
int i_type;
int i_first_mb;
int i_last_mb;
int i_pps_id;
int i_frame_num;
int b_mbaff;
int b_field_pic;
int b_bottom_field;
int i_idr_pic_id; /* -1 if nal_type != 5 */
int i_poc_lsb;
int i_delta_poc_bottom;
int i_delta_poc[2];
int i_redundant_pic_cnt;
int b_direct_spatial_mv_pred;
int b_num_ref_idx_override;
int i_num_ref_idx_l0_active;
int i_num_ref_idx_l1_active;
int b_ref_pic_list_reordering_l0;
int b_ref_pic_list_reordering_l1;
struct {
int idc;
int arg;
} ref_pic_list_order[2][16];
int i_cabac_init_idc;
int i_qp;
int i_qp_delta;
int b_sp_for_swidth;
int i_qs_delta;
/* deblocking filter */
int i_disable_deblocking_filter_idc;
int i_alpha_c0_offset;
int i_beta_offset;
} x264_slice_header_t;
/* From ffmpeg
*/
#define X264_SCAN8_SIZE (6*8)
#define X264_SCAN8_0 (4+1*8)
static const int x264_scan8[16+2*4+3] =
{
/* Luma */
4+1*8, 5+1*8, 4+2*8, 5+2*8,
6+1*8, 7+1*8, 6+2*8, 7+2*8,
4+3*8, 5+3*8, 4+4*8, 5+4*8,
6+3*8, 7+3*8, 6+4*8, 7+4*8,
/* Cb */
1+1*8, 2+1*8,
1+2*8, 2+2*8,
/* Cr */
1+4*8, 2+4*8,
1+5*8, 2+5*8,
/* Luma DC */
4+5*8,
/* Chroma DC */
5+5*8, 6+5*8
};
/*
0 1 2 3 4 5 6 7
0
1 B B L L L L
2 B B L L L L
3 L L L L
4 R R L L L L
5 R R DyDuDv
*/
typedef struct x264_ratecontrol_t x264_ratecontrol_t;
struct x264_t
{
/* encoder parameters */
x264_param_t param;
x264_t *thread[X264_THREAD_MAX];
x264_pthread_t thread_handle;
int b_thread_active;
int i_thread_phase; /* which thread to use for the next frame */
/* bitstream output */
struct
{
int i_nal;
x264_nal_t nal[X264_NAL_MAX];
int i_bitstream; /* size of p_bitstream */
uint8_t *p_bitstream; /* will hold data for all nal */
bs_t bs;
int i_frame_size;
} out;
/**** thread synchronization starts here ****/
/* frame number/poc */
int i_frame;
int i_frame_offset; /* decoding only */
int i_frame_num; /* decoding only */
int i_poc_msb; /* decoding only */
int i_poc_lsb; /* decoding only */
int i_poc; /* decoding only */
int i_thread_num; /* threads only */
int i_nal_type; /* threads only */
int i_nal_ref_idc; /* threads only */
/* We use only one SPS and one PPS */
x264_sps_t sps_array[1];
x264_sps_t *sps;
x264_pps_t pps_array[1];
x264_pps_t *pps;
int i_idr_pic_id;
/* quantization matrix for decoding, [cqm][qp%6][coef_y][coef_x] */
int (*dequant4_mf[4])[4][4]; /* [4][6][4][4] */
int (*dequant8_mf[2])[8][8]; /* [2][6][8][8] */
/* quantization matrix for trellis, [cqm][qp][coef] */
int (*unquant4_mf[4])[16]; /* [4][52][16] */
int (*unquant8_mf[2])[64]; /* [2][52][64] */
/* quantization matrix for deadzone */
uint16_t (*quant4_mf[4])[16]; /* [4][52][16] */
uint16_t (*quant8_mf[2])[64]; /* [2][52][64] */
uint16_t (*quant4_bias[4])[16]; /* [4][52][16] */
uint16_t (*quant8_bias[2])[64]; /* [2][52][64] */
const uint8_t *chroma_qp_table; /* includes both the nonlinear luma->chroma mapping and chroma_qp_offset */
DECLARE_ALIGNED_16( uint32_t nr_residual_sum[2][64] );
DECLARE_ALIGNED_16( uint16_t nr_offset[2][64] );
uint32_t nr_count[2];
/* Slice header */
x264_slice_header_t sh;
/* cabac context */
x264_cabac_t cabac;
struct
{
/* Frames to be encoded (whose types have been decided) */
x264_frame_t *current[X264_BFRAME_MAX*4+3];
/* Temporary buffer (frames types not yet decided) */
x264_frame_t *next[X264_BFRAME_MAX*4+3];
/* Unused frames */
x264_frame_t *unused[X264_BFRAME_MAX*4 + X264_THREAD_MAX*2 + 16+4];
/* For adaptive B decision */
x264_frame_t *last_nonb;
/* frames used for reference + sentinels */
x264_frame_t *reference[16+2];
int i_last_idr; /* Frame number of the last IDR */
int i_input; /* Number of input frames already accepted */
int i_max_dpb; /* Number of frames allocated in the decoded picture buffer */
int i_max_ref0;
int i_max_ref1;
int i_delay; /* Number of frames buffered for B reordering */
int b_have_lowres; /* Whether 1/2 resolution luma planes are being used */
} frames;
/* current frame being encoded */
x264_frame_t *fenc;
/* frame being reconstructed */
x264_frame_t *fdec;
/* references lists */
int i_ref0;
x264_frame_t *fref0[16+3]; /* ref list 0 */
int i_ref1;
x264_frame_t *fref1[16+3]; /* ref list 1 */
int b_ref_reorder[2];
/* Current MB DCT coeffs */
struct
{
DECLARE_ALIGNED_16( int16_t luma16x16_dc[16] );
DECLARE_ALIGNED_16( int16_t chroma_dc[2][4] );
// FIXME share memory?
DECLARE_ALIGNED_16( int16_t luma8x8[4][64] );
DECLARE_ALIGNED_16( int16_t luma4x4[16+8][16] );
} dct;
/* MB table and cache for current frame/mb */
struct
{
int i_mb_count; /* number of mbs in a frame */
/* Strides */
int i_mb_stride;
int i_b8_stride;
int i_b4_stride;
/* Current index */
int i_mb_x;
int i_mb_y;
int i_mb_xy;
int i_b8_xy;
int i_b4_xy;
/* Search parameters */
int i_me_method;
int i_subpel_refine;
int b_chroma_me;
int b_trellis;
int b_noise_reduction;
int i_psy_rd; /* Psy RD strength--fixed point value*/
int i_psy_trellis; /* Psy trellis strength--fixed point value*/
int b_interlaced;
/* Allowed qpel MV range to stay within the picture + emulated edge pixels */
int mv_min[2];
int mv_max[2];
/* Subpel MV range for motion search.
* same mv_min/max but includes levels' i_mv_range. */
int mv_min_spel[2];
int mv_max_spel[2];
/* Fullpel MV range for motion search */
int mv_min_fpel[2];
int mv_max_fpel[2];
/* neighboring MBs */
unsigned int i_neighbour;
unsigned int i_neighbour8[4]; /* neighbours of each 8x8 or 4x4 block that are available */
unsigned int i_neighbour4[16]; /* at the time the block is coded */
int i_mb_type_top;
int i_mb_type_left;
int i_mb_type_topleft;
int i_mb_type_topright;
int i_mb_prev_xy;
int i_mb_top_xy;
/**** thread synchronization ends here ****/
/* subsequent variables are either thread-local or constant,
* and won't be copied from one thread to another */
/* mb table */
int8_t *type; /* mb type */
int8_t *qp; /* mb qp */
int16_t *cbp; /* mb cbp: 0x0?: luma, 0x?0: chroma, 0x100: luma dc, 0x0200 and 0x0400: chroma dc (all set for PCM)*/
int8_t (*intra4x4_pred_mode)[8]; /* intra4x4 pred mode. for non I4x4 set to I_PRED_4x4_DC(2) */
/* actually has only 7 entries; set to 8 for write-combining optimizations */
uint8_t (*non_zero_count)[16+4+4]; /* nzc. for I_PCM set to 16 */
int8_t *chroma_pred_mode; /* chroma_pred_mode. cabac only. for non intra I_PRED_CHROMA_DC(0) */
int16_t (*mv[2])[2]; /* mb mv. set to 0 for intra mb */
int16_t (*mvd[2])[2]; /* mb mv difference with predict. set to 0 if intra. cabac only */
int8_t *ref[2]; /* mb ref. set to -1 if non used (intra or Lx only) */
int16_t (*mvr[2][32])[2]; /* 16x16 mv for each possible ref */
int8_t *skipbp; /* block pattern for SKIP or DIRECT (sub)mbs. B-frames + cabac only */
int8_t *mb_transform_size; /* transform_size_8x8_flag of each mb */
uint8_t *intra_border_backup[2][3]; /* bottom pixels of the previous mb row, used for intra prediction after the framebuffer has been deblocked */
uint8_t (*nnz_backup)[16]; /* when using cavlc + 8x8dct, the deblocker uses a modified nnz */
/* current value */
int i_type;
int i_partition;
int i_sub_partition[4];
int b_transform_8x8;
int i_cbp_luma;
int i_cbp_chroma;
int i_intra16x16_pred_mode;
int i_chroma_pred_mode;
/* skip flags for i4x4 and i8x8
* 0 = encode as normal.
* 1 (non-RD only) = the DCT is still in h->dct, restore fdec and skip reconstruction.
* 2 (RD only) = the DCT has since been overwritten by RD; restore that too. */
int i_skip_intra;
/* skip flag for motion compensation */
/* if we've already done MC, we don't need to do it again */
int b_skip_mc;
struct
{
/* space for p_fenc and p_fdec */
#define FENC_STRIDE 16
#define FDEC_STRIDE 32
DECLARE_ALIGNED_16( uint8_t fenc_buf[24*FENC_STRIDE] );
DECLARE_ALIGNED_16( uint8_t fdec_buf[27*FDEC_STRIDE] );
/* i4x4 and i8x8 backup data, for skipping the encode stage when possible */
DECLARE_ALIGNED_16( uint8_t i4x4_fdec_buf[16*16] );
DECLARE_ALIGNED_16( uint8_t i8x8_fdec_buf[16*16] );
DECLARE_ALIGNED_16( int16_t i8x8_dct_buf[3][64] );
DECLARE_ALIGNED_16( int16_t i4x4_dct_buf[15][16] );
/* Psy trellis DCT data */
DECLARE_ALIGNED_16( int16_t fenc_dct8[4][64] );
DECLARE_ALIGNED_16( int16_t fenc_dct4[16][16] );
/* Psy RD SATD scores */
int fenc_satd[4][4];
int fenc_satd_sum;
int fenc_sa8d[2][2];
int fenc_sa8d_sum;
/* pointer over mb of the frame to be compressed */
uint8_t *p_fenc[3];
/* pointer to the actual source frame, not a block copy */
uint8_t *p_fenc_plane[3];
/* pointer over mb of the frame to be reconstructed */
uint8_t *p_fdec[3];
/* pointer over mb of the references */
int i_fref[2];
uint8_t *p_fref[2][32][4+2]; /* last: lN, lH, lV, lHV, cU, cV */
uint16_t *p_integral[2][16];
/* fref stride */
int i_stride[3];
} pic;
/* cache */
struct
{
/* real intra4x4_pred_mode if I_4X4 or I_8X8, I_PRED_4x4_DC if mb available, -1 if not */
int8_t intra4x4_pred_mode[X264_SCAN8_SIZE];
/* i_non_zero_count if available else 0x80 */
uint8_t non_zero_count[X264_SCAN8_SIZE];
/* -1 if unused, -2 if unavailable */
DECLARE_ALIGNED_4( int8_t ref[2][X264_SCAN8_SIZE] );
/* 0 if not available */
DECLARE_ALIGNED_16( int16_t mv[2][X264_SCAN8_SIZE][2] );
DECLARE_ALIGNED_8( int16_t mvd[2][X264_SCAN8_SIZE][2] );
/* 1 if SKIP or DIRECT. set only for B-frames + CABAC */
DECLARE_ALIGNED_4( int8_t skip[X264_SCAN8_SIZE] );
DECLARE_ALIGNED_16( int16_t direct_mv[2][X264_SCAN8_SIZE][2] );
DECLARE_ALIGNED_4( int8_t direct_ref[2][X264_SCAN8_SIZE] );
DECLARE_ALIGNED_4( int16_t pskip_mv[2] );
/* number of neighbors (top and left) that used 8x8 dct */
int i_neighbour_transform_size;
int i_neighbour_interlaced;
} cache;
/* */
int i_qp; /* current qp */
int i_chroma_qp;
int i_last_qp; /* last qp */
int i_last_dqp; /* last delta qp */
int b_variable_qp; /* whether qp is allowed to vary per macroblock */
int b_lossless;
int b_direct_auto_read; /* take stats for --direct auto from the 2pass log */
int b_direct_auto_write; /* analyse direct modes, to use and/or save */
/* B_direct and weighted prediction */
int16_t dist_scale_factor[16][2];
int16_t bipred_weight[32][4];
/* maps fref1[0]'s ref indices into the current list0 */
int8_t map_col_to_list0_buf[2]; // for negative indices
int8_t map_col_to_list0[16];
} mb;
/* rate control encoding only */
x264_ratecontrol_t *rc;
/* stats */
struct
{
/* Current frame stats */
struct
{
/* MV bits (MV+Ref+Block Type) */
int i_mv_bits;
/* Texture bits (DCT coefs) */
int i_tex_bits;
/* ? */
int i_misc_bits;
/* MB type counts */
int i_mb_count[19];
int i_mb_count_i;
int i_mb_count_p;
int i_mb_count_skip;
int i_mb_count_8x8dct[2];
int i_mb_count_ref[2][32];
int i_mb_partition[17];
/* Estimated (SATD) cost as Intra/Predicted frame */
/* XXX: both omit the cost of MBs coded as P_SKIP */
int i_intra_cost;
int i_inter_cost;
int i_mbs_analysed;
/* Adaptive direct mv pred */
int i_direct_score[2];
/* Metrics */
int64_t i_ssd[3];
double f_ssim;
} frame;
/* Cumulated stats */
/* per slice info */
int i_slice_count[5];
int64_t i_slice_size[5];
double f_slice_qp[5];
int i_consecutive_bframes[X264_BFRAME_MAX+1];
/* */
int64_t i_ssd_global[5];
double f_psnr_average[5];
double f_psnr_mean_y[5];
double f_psnr_mean_u[5];
double f_psnr_mean_v[5];
double f_ssim_mean_y[5];
/* */
int64_t i_mb_count[5][19];
int64_t i_mb_partition[2][17];
int64_t i_mb_count_8x8dct[2];
int64_t i_mb_count_ref[2][2][32];
/* */
int i_direct_score[2];
int i_direct_frames[2];
} stat;
/* CPU functions dependents */
x264_predict_t predict_16x16[4+3];
x264_predict_t predict_8x8c[4+3];
x264_predict8x8_t predict_8x8[9+3];
x264_predict_t predict_4x4[9+3];
x264_pixel_function_t pixf;
x264_mc_functions_t mc;
x264_dct_function_t dctf;
x264_zigzag_function_t zigzagf;
x264_quant_function_t quantf;
x264_deblock_function_t loopf;
#if VISUALIZE
struct visualize_t *visualize;
#endif
};
// included at the end because it needs x264_t
#include "macroblock.h"
#ifdef HAVE_MMX
#include "x86/util.h"
#endif
#endif