blob: 195c7659b82d09a63d4bbddb1a0d36ba0e20aece [file] [log] [blame]
/*****************************************************************************
* macroblock.h: h264 encoder library
*****************************************************************************
* Copyright (C) 2005-2008 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Laurent Aimar <fenrir@via.ecp.fr>
* Jason Garrett-Glaser <darkshikari@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
#ifndef X264_MACROBLOCK_H
#define X264_MACROBLOCK_H
enum macroblock_position_e
{
MB_LEFT = 0x01,
MB_TOP = 0x02,
MB_TOPRIGHT = 0x04,
MB_TOPLEFT = 0x08,
MB_PRIVATE = 0x10,
ALL_NEIGHBORS = 0xf,
};
static const uint8_t x264_pred_i4x4_neighbors[12] =
{
MB_TOP, // I_PRED_4x4_V
MB_LEFT, // I_PRED_4x4_H
MB_LEFT | MB_TOP, // I_PRED_4x4_DC
MB_TOP | MB_TOPRIGHT, // I_PRED_4x4_DDL
MB_LEFT | MB_TOPLEFT | MB_TOP, // I_PRED_4x4_DDR
MB_LEFT | MB_TOPLEFT | MB_TOP, // I_PRED_4x4_VR
MB_LEFT | MB_TOPLEFT | MB_TOP, // I_PRED_4x4_HD
MB_TOP | MB_TOPRIGHT, // I_PRED_4x4_VL
MB_LEFT, // I_PRED_4x4_HU
MB_LEFT, // I_PRED_4x4_DC_LEFT
MB_TOP, // I_PRED_4x4_DC_TOP
0 // I_PRED_4x4_DC_128
};
/* XXX mb_type isn't the one written in the bitstream -> only internal usage */
#define IS_INTRA(type) ( (type) == I_4x4 || (type) == I_8x8 || (type) == I_16x16 || (type) == I_PCM )
#define IS_SKIP(type) ( (type) == P_SKIP || (type) == B_SKIP )
#define IS_DIRECT(type) ( (type) == B_DIRECT )
enum mb_class_e
{
I_4x4 = 0,
I_8x8 = 1,
I_16x16 = 2,
I_PCM = 3,
P_L0 = 4,
P_8x8 = 5,
P_SKIP = 6,
B_DIRECT = 7,
B_L0_L0 = 8,
B_L0_L1 = 9,
B_L0_BI = 10,
B_L1_L0 = 11,
B_L1_L1 = 12,
B_L1_BI = 13,
B_BI_L0 = 14,
B_BI_L1 = 15,
B_BI_BI = 16,
B_8x8 = 17,
B_SKIP = 18,
X264_MBTYPE_MAX = 19
};
static const uint8_t x264_mb_type_fix[X264_MBTYPE_MAX] =
{
I_4x4, I_4x4, I_16x16, I_PCM,
P_L0, P_8x8, P_SKIP,
B_DIRECT, B_L0_L0, B_L0_L1, B_L0_BI, B_L1_L0, B_L1_L1,
B_L1_BI, B_BI_L0, B_BI_L1, B_BI_BI, B_8x8, B_SKIP
};
static const uint8_t x264_mb_type_list0_table[X264_MBTYPE_MAX][2] =
{
{0,0}, {0,0}, {0,0}, {0,0}, /* INTRA */
{1,1}, /* P_L0 */
{0,0}, /* P_8x8 */
{1,1}, /* P_SKIP */
{0,0}, /* B_DIRECT */
{1,1}, {1,0}, {1,1}, /* B_L0_* */
{0,1}, {0,0}, {0,1}, /* B_L1_* */
{1,1}, {1,0}, {1,1}, /* B_BI_* */
{0,0}, /* B_8x8 */
{0,0} /* B_SKIP */
};
static const uint8_t x264_mb_type_list1_table[X264_MBTYPE_MAX][2] =
{
{0,0}, {0,0}, {0,0}, {0,0}, /* INTRA */
{0,0}, /* P_L0 */
{0,0}, /* P_8x8 */
{0,0}, /* P_SKIP */
{0,0}, /* B_DIRECT */
{0,0}, {0,1}, {0,1}, /* B_L0_* */
{1,0}, {1,1}, {1,1}, /* B_L1_* */
{1,0}, {1,1}, {1,1}, /* B_BI_* */
{0,0}, /* B_8x8 */
{0,0} /* B_SKIP */
};
#define IS_SUB4x4(type) ( (type ==D_L0_4x4)||(type ==D_L1_4x4)||(type ==D_BI_4x4))
#define IS_SUB4x8(type) ( (type ==D_L0_4x8)||(type ==D_L1_4x8)||(type ==D_BI_4x8))
#define IS_SUB8x4(type) ( (type ==D_L0_8x4)||(type ==D_L1_8x4)||(type ==D_BI_8x4))
#define IS_SUB8x8(type) ( (type ==D_L0_8x8)||(type ==D_L1_8x8)||(type ==D_BI_8x8)||(type ==D_DIRECT_8x8))
enum mb_partition_e
{
/* sub partition type for P_8x8 and B_8x8 */
D_L0_4x4 = 0,
D_L0_8x4 = 1,
D_L0_4x8 = 2,
D_L0_8x8 = 3,
/* sub partition type for B_8x8 only */
D_L1_4x4 = 4,
D_L1_8x4 = 5,
D_L1_4x8 = 6,
D_L1_8x8 = 7,
D_BI_4x4 = 8,
D_BI_8x4 = 9,
D_BI_4x8 = 10,
D_BI_8x8 = 11,
D_DIRECT_8x8 = 12,
/* partition */
D_8x8 = 13,
D_16x8 = 14,
D_8x16 = 15,
D_16x16 = 16,
X264_PARTTYPE_MAX = 17,
};
static const uint8_t x264_mb_partition_listX_table[2][17] =
{{
1, 1, 1, 1, /* D_L0_* */
0, 0, 0, 0, /* D_L1_* */
1, 1, 1, 1, /* D_BI_* */
0, /* D_DIRECT_8x8 */
0, 0, 0, 0 /* 8x8 .. 16x16 */
},
{
0, 0, 0, 0, /* D_L0_* */
1, 1, 1, 1, /* D_L1_* */
1, 1, 1, 1, /* D_BI_* */
0, /* D_DIRECT_8x8 */
0, 0, 0, 0 /* 8x8 .. 16x16 */
}};
static const uint8_t x264_mb_partition_count_table[17] =
{
/* sub L0 */
4, 2, 2, 1,
/* sub L1 */
4, 2, 2, 1,
/* sub BI */
4, 2, 2, 1,
/* Direct */
1,
/* Partition */
4, 2, 2, 1
};
static const uint8_t x264_mb_partition_pixel_table[17] =
{
6, 4, 5, 3, 6, 4, 5, 3, 6, 4, 5, 3, 3, 3, 1, 2, 0
};
/* zigzags are transposed with respect to the tables in the standard */
static const uint8_t x264_zigzag_scan4[2][16] =
{{ // frame
0, 4, 1, 2, 5, 8, 12, 9, 6, 3, 7, 10, 13, 14, 11, 15
},
{ // field
0, 1, 4, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
}};
static const uint8_t x264_zigzag_scan8[2][64] =
{{
0, 8, 1, 2, 9, 16, 24, 17, 10, 3, 4, 11, 18, 25, 32, 40,
33, 26, 19, 12, 5, 6, 13, 20, 27, 34, 41, 48, 56, 49, 42, 35,
28, 21, 14, 7, 15, 22, 29, 36, 43, 50, 57, 58, 51, 44, 37, 30,
23, 31, 38, 45, 52, 59, 60, 53, 46, 39, 47, 54, 61, 62, 55, 63
},
{
0, 1, 2, 8, 9, 3, 4, 10, 16, 11, 5, 6, 7, 12, 17, 24,
18, 13, 14, 15, 19, 25, 32, 26, 20, 21, 22, 23, 27, 33, 40, 34,
28, 29, 30, 31, 35, 41, 48, 42, 36, 37, 38, 39, 43, 49, 50, 44,
45, 46, 47, 51, 56, 57, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63
}};
static const uint8_t block_idx_x[16] =
{
0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
};
static const uint8_t block_idx_y[16] =
{
0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
};
static const uint8_t block_idx_xy[4][4] =
{
{ 0, 2, 8, 10 },
{ 1, 3, 9, 11 },
{ 4, 6, 12, 14 },
{ 5, 7, 13, 15 }
};
static const uint8_t block_idx_xy_1d[16] =
{
0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15
};
static const uint8_t block_idx_yx_1d[16] =
{
0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
};
static const uint8_t block_idx_xy_fenc[16] =
{
0*4 + 0*4*FENC_STRIDE, 1*4 + 0*4*FENC_STRIDE,
0*4 + 1*4*FENC_STRIDE, 1*4 + 1*4*FENC_STRIDE,
2*4 + 0*4*FENC_STRIDE, 3*4 + 0*4*FENC_STRIDE,
2*4 + 1*4*FENC_STRIDE, 3*4 + 1*4*FENC_STRIDE,
0*4 + 2*4*FENC_STRIDE, 1*4 + 2*4*FENC_STRIDE,
0*4 + 3*4*FENC_STRIDE, 1*4 + 3*4*FENC_STRIDE,
2*4 + 2*4*FENC_STRIDE, 3*4 + 2*4*FENC_STRIDE,
2*4 + 3*4*FENC_STRIDE, 3*4 + 3*4*FENC_STRIDE
};
static const uint16_t block_idx_xy_fdec[16] =
{
0*4 + 0*4*FDEC_STRIDE, 1*4 + 0*4*FDEC_STRIDE,
0*4 + 1*4*FDEC_STRIDE, 1*4 + 1*4*FDEC_STRIDE,
2*4 + 0*4*FDEC_STRIDE, 3*4 + 0*4*FDEC_STRIDE,
2*4 + 1*4*FDEC_STRIDE, 3*4 + 1*4*FDEC_STRIDE,
0*4 + 2*4*FDEC_STRIDE, 1*4 + 2*4*FDEC_STRIDE,
0*4 + 3*4*FDEC_STRIDE, 1*4 + 3*4*FDEC_STRIDE,
2*4 + 2*4*FDEC_STRIDE, 3*4 + 2*4*FDEC_STRIDE,
2*4 + 3*4*FDEC_STRIDE, 3*4 + 3*4*FDEC_STRIDE
};
static const uint8_t i_chroma_qp_table[52+12*2] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
29, 30, 31, 32, 32, 33, 34, 34, 35, 35,
36, 36, 37, 37, 37, 38, 38, 38, 39, 39,
39, 39,
39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39,
};
enum cabac_ctx_block_cat_e
{
DCT_LUMA_DC = 0,
DCT_LUMA_AC = 1,
DCT_LUMA_4x4 = 2,
DCT_CHROMA_DC = 3,
DCT_CHROMA_AC = 4,
DCT_LUMA_8x8 = 5,
};
int x264_macroblock_cache_init( x264_t *h );
void x264_macroblock_slice_init( x264_t *h );
void x264_macroblock_cache_load( x264_t *h, int i_mb_x, int i_mb_y );
void x264_macroblock_cache_save( x264_t *h );
void x264_macroblock_cache_end( x264_t *h );
void x264_macroblock_bipred_init( x264_t *h );
void x264_prefetch_fenc( x264_t *h, x264_frame_t *fenc, int i_mb_x, int i_mb_y );
/* x264_mb_predict_mv_16x16:
* set mvp with predicted mv for D_16x16 block
* h->mb. need only valid values from other blocks */
void x264_mb_predict_mv_16x16( x264_t *h, int i_list, int i_ref, int16_t mvp[2] );
/* x264_mb_predict_mv_pskip:
* set mvp with predicted mv for P_SKIP
* h->mb. need only valid values from other blocks */
void x264_mb_predict_mv_pskip( x264_t *h, int16_t mv[2] );
/* x264_mb_predict_mv:
* set mvp with predicted mv for all blocks except SKIP and DIRECT
* h->mb. need valid ref/partition/sub of current block to be valid
* and valid mv/ref from other blocks. */
void x264_mb_predict_mv( x264_t *h, int i_list, int idx, int i_width, int16_t mvp[2] );
/* x264_mb_predict_mv_direct16x16:
* set h->mb.cache.mv and h->mb.cache.ref for B_SKIP or B_DIRECT
* h->mb. need only valid values from other blocks.
* return 1 on success, 0 on failure.
* if b_changed != NULL, set it to whether refs or mvs differ from
* before this functioncall. */
int x264_mb_predict_mv_direct16x16( x264_t *h, int *b_changed );
/* x264_mb_load_mv_direct8x8:
* set h->mb.cache.mv and h->mb.cache.ref for B_DIRECT
* must be called only after x264_mb_predict_mv_direct16x16 */
void x264_mb_load_mv_direct8x8( x264_t *h, int idx );
/* x264_mb_predict_mv_ref16x16:
* set mvc with D_16x16 prediction.
* uses all neighbors, even those that didn't end up using this ref.
* h->mb. need only valid values from other blocks */
void x264_mb_predict_mv_ref16x16( x264_t *h, int i_list, int i_ref, int16_t mvc[8][2], int *i_mvc );
void x264_mb_mc( x264_t *h );
void x264_mb_mc_8x8( x264_t *h, int i8 );
static ALWAYS_INLINE uint32_t pack16to32( int a, int b )
{
#ifdef WORDS_BIGENDIAN
return b + (a<<16);
#else
return a + (b<<16);
#endif
}
static ALWAYS_INLINE uint32_t pack8to16( int a, int b )
{
#ifdef WORDS_BIGENDIAN
return b + (a<<8);
#else
return a + (b<<8);
#endif
}
static ALWAYS_INLINE uint32_t pack8to32( int a, int b, int c, int d )
{
#ifdef WORDS_BIGENDIAN
return d + (c<<8) + (b<<16) + (a<<24);
#else
return a + (b<<8) + (c<<16) + (d<<24);
#endif
}
static ALWAYS_INLINE uint32_t pack16to32_mask( int a, int b )
{
#ifdef WORDS_BIGENDIAN
return (b&0xFFFF) + (a<<16);
#else
return (a&0xFFFF) + (b<<16);
#endif
}
static ALWAYS_INLINE void x264_macroblock_cache_rect1( void *dst, int width, int height, uint8_t val )
{
int dy;
if( width == 4 )
{
uint32_t val2 = val * 0x01010101;
for( dy = 0; dy < height; dy++ )
((uint32_t*)dst)[2*dy] = val2;
}
else // 2
{
uint32_t val2 = val * 0x0101;
for( dy = 0; dy < height; dy++ )
((uint16_t*)dst)[4*dy] = val2;
}
}
static ALWAYS_INLINE void x264_macroblock_cache_rect4( void *dst, int width, int height, uint32_t val )
{
int dy, dx;
if( width == 1 || WORD_SIZE < 8 )
{
for( dy = 0; dy < height; dy++ )
for( dx = 0; dx < width; dx++ )
((uint32_t*)dst)[dx+8*dy] = val;
}
else
{
uint64_t val64 = val + ((uint64_t)val<<32);
for( dy = 0; dy < height; dy++ )
for( dx = 0; dx < width/2; dx++ )
((uint64_t*)dst)[dx+4*dy] = val64;
}
}
#define x264_macroblock_cache_mv_ptr(a,x,y,w,h,l,mv) x264_macroblock_cache_mv(a,x,y,w,h,l,*(uint32_t*)mv)
static ALWAYS_INLINE void x264_macroblock_cache_mv( x264_t *h, int x, int y, int width, int height, int i_list, uint32_t mv )
{
x264_macroblock_cache_rect4( &h->mb.cache.mv[i_list][X264_SCAN8_0+x+8*y], width, height, mv );
}
static ALWAYS_INLINE void x264_macroblock_cache_mvd( x264_t *h, int x, int y, int width, int height, int i_list, uint32_t mv )
{
x264_macroblock_cache_rect4( &h->mb.cache.mvd[i_list][X264_SCAN8_0+x+8*y], width, height, mv );
}
static ALWAYS_INLINE void x264_macroblock_cache_ref( x264_t *h, int x, int y, int width, int height, int i_list, uint8_t ref )
{
x264_macroblock_cache_rect1( &h->mb.cache.ref[i_list][X264_SCAN8_0+x+8*y], width, height, ref );
}
static ALWAYS_INLINE void x264_macroblock_cache_skip( x264_t *h, int x, int y, int width, int height, int b_skip )
{
x264_macroblock_cache_rect1( &h->mb.cache.skip[X264_SCAN8_0+x+8*y], width, height, b_skip );
}
static ALWAYS_INLINE void x264_macroblock_cache_intra8x8_pred( x264_t *h, int x, int y, int i_mode )
{
int8_t *cache = &h->mb.cache.intra4x4_pred_mode[X264_SCAN8_0+x+8*y];
cache[0] = cache[1] = cache[8] = cache[9] = i_mode;
}
#define array_non_zero(a) array_non_zero_int(a, sizeof(a))
#define array_non_zero_int array_non_zero_int_c
static ALWAYS_INLINE int array_non_zero_int_c( void *v, int i_count )
{
uint64_t *x = v;
if(i_count == 8)
return !!x[0];
else if(i_count == 16)
return !!(x[0]|x[1]);
else if(i_count == 32)
return !!(x[0]|x[1]|x[2]|x[3]);
else
{
int i;
i_count /= sizeof(uint64_t);
for( i = 0; i < i_count; i++ )
if( x[i] ) return 1;
return 0;
}
}
/* This function and its MMX version only work on arrays of size 16 */
static ALWAYS_INLINE int array_non_zero_count( int16_t *v )
{
int i;
int i_nz;
for( i = 0, i_nz = 0; i < 16; i++ )
if( v[i] )
i_nz++;
return i_nz;
}
static inline int x264_mb_predict_intra4x4_mode( x264_t *h, int idx )
{
const int ma = h->mb.cache.intra4x4_pred_mode[x264_scan8[idx] - 1];
const int mb = h->mb.cache.intra4x4_pred_mode[x264_scan8[idx] - 8];
const int m = X264_MIN( x264_mb_pred_mode4x4_fix(ma),
x264_mb_pred_mode4x4_fix(mb) );
if( m < 0 )
return I_PRED_4x4_DC;
return m;
}
static inline int x264_mb_predict_non_zero_code( x264_t *h, int idx )
{
const int za = h->mb.cache.non_zero_count[x264_scan8[idx] - 1];
const int zb = h->mb.cache.non_zero_count[x264_scan8[idx] - 8];
int i_ret = za + zb;
if( i_ret < 0x80 )
{
i_ret = ( i_ret + 1 ) >> 1;
}
return i_ret & 0x7f;
}
/* x264_mb_transform_8x8_allowed:
* check whether any partition is smaller than 8x8 (or at least
* might be, according to just partition type.)
* doesn't check for cbp */
static inline int x264_mb_transform_8x8_allowed( x264_t *h )
{
// intra and skip are disallowed
// large partitions are allowed
// direct and 8x8 are conditional
static const uint8_t partition_tab[X264_MBTYPE_MAX] = {
0,0,0,0,1,2,0,2,1,1,1,1,1,1,1,1,1,2,0,
};
int p, i;
if( !h->pps->b_transform_8x8_mode )
return 0;
p = partition_tab[h->mb.i_type];
if( p < 2 )
return p;
else if( h->mb.i_type == B_DIRECT )
return h->sps->b_direct8x8_inference;
else if( h->mb.i_type == P_8x8 )
{
if( !(h->param.analyse.inter & X264_ANALYSE_PSUB8x8) )
return 1;
for( i=0; i<4; i++ )
if( h->mb.i_sub_partition[i] != D_L0_8x8 )
return 0;
return 1;
}
else // B_8x8
{
// x264 currently doesn't use sub-8x8 B partitions, so don't check for them
if( h->sps->b_direct8x8_inference )
return 1;
for( i=0; i<4; i++ )
if( h->mb.i_sub_partition[i] == D_DIRECT_8x8 )
return 0;
return 1;
}
}
#endif