blob: 746c95ab62ccf479661e618aa1a471df43099cd0 [file] [log] [blame]
/*****************************************************************************
* pixel.c: h264 encoder
*****************************************************************************
* Copyright (C) 2003-2008 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Laurent Aimar <fenrir@via.ecp.fr>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
#include "common.h"
#ifdef HAVE_MMX
# include "x86/pixel.h"
#endif
#ifdef ARCH_PPC
# include "ppc/pixel.h"
#endif
#ifdef ARCH_UltraSparc
# include "sparc/pixel.h"
#endif
/****************************************************************************
* pixel_sad_WxH
****************************************************************************/
#define PIXEL_SAD_C( name, lx, ly ) \
static int name( uint8_t *pix1, int i_stride_pix1, \
uint8_t *pix2, int i_stride_pix2 ) \
{ \
int i_sum = 0; \
int x, y; \
for( y = 0; y < ly; y++ ) \
{ \
for( x = 0; x < lx; x++ ) \
{ \
i_sum += abs( pix1[x] - pix2[x] ); \
} \
pix1 += i_stride_pix1; \
pix2 += i_stride_pix2; \
} \
return i_sum; \
}
PIXEL_SAD_C( x264_pixel_sad_16x16, 16, 16 )
PIXEL_SAD_C( x264_pixel_sad_16x8, 16, 8 )
PIXEL_SAD_C( x264_pixel_sad_8x16, 8, 16 )
PIXEL_SAD_C( x264_pixel_sad_8x8, 8, 8 )
PIXEL_SAD_C( x264_pixel_sad_8x4, 8, 4 )
PIXEL_SAD_C( x264_pixel_sad_4x8, 4, 8 )
PIXEL_SAD_C( x264_pixel_sad_4x4, 4, 4 )
/****************************************************************************
* pixel_ssd_WxH
****************************************************************************/
#define PIXEL_SSD_C( name, lx, ly ) \
static int name( uint8_t *pix1, int i_stride_pix1, \
uint8_t *pix2, int i_stride_pix2 ) \
{ \
int i_sum = 0; \
int x, y; \
for( y = 0; y < ly; y++ ) \
{ \
for( x = 0; x < lx; x++ ) \
{ \
int d = pix1[x] - pix2[x]; \
i_sum += d*d; \
} \
pix1 += i_stride_pix1; \
pix2 += i_stride_pix2; \
} \
return i_sum; \
}
PIXEL_SSD_C( x264_pixel_ssd_16x16, 16, 16 )
PIXEL_SSD_C( x264_pixel_ssd_16x8, 16, 8 )
PIXEL_SSD_C( x264_pixel_ssd_8x16, 8, 16 )
PIXEL_SSD_C( x264_pixel_ssd_8x8, 8, 8 )
PIXEL_SSD_C( x264_pixel_ssd_8x4, 8, 4 )
PIXEL_SSD_C( x264_pixel_ssd_4x8, 4, 8 )
PIXEL_SSD_C( x264_pixel_ssd_4x4, 4, 4 )
int64_t x264_pixel_ssd_wxh( x264_pixel_function_t *pf, uint8_t *pix1, int i_pix1, uint8_t *pix2, int i_pix2, int i_width, int i_height )
{
int64_t i_ssd = 0;
int x, y;
int align = !(((long)pix1 | (long)pix2 | i_pix1 | i_pix2) & 15);
#define SSD(size) i_ssd += pf->ssd[size]( pix1 + y*i_pix1 + x, i_pix1, \
pix2 + y*i_pix2 + x, i_pix2 );
for( y = 0; y < i_height-15; y += 16 )
{
x = 0;
if( align )
for( ; x < i_width-15; x += 16 )
SSD(PIXEL_16x16);
for( ; x < i_width-7; x += 8 )
SSD(PIXEL_8x16);
}
if( y < i_height-7 )
for( x = 0; x < i_width-7; x += 8 )
SSD(PIXEL_8x8);
#undef SSD
#define SSD1 { int d = pix1[y*i_pix1+x] - pix2[y*i_pix2+x]; i_ssd += d*d; }
if( i_width % 8 != 0 )
{
for( y = 0; y < (i_height & ~7); y++ )
for( x = i_width & ~7; x < i_width; x++ )
SSD1;
}
if( i_height % 8 != 0 )
{
for( y = i_height & ~7; y < i_height; y++ )
for( x = 0; x < i_width; x++ )
SSD1;
}
#undef SSD1
return i_ssd;
}
/****************************************************************************
* pixel_var_wxh
****************************************************************************/
#define PIXEL_VAR_C( name, w, shift ) \
static int name( uint8_t *pix, int i_stride, uint32_t *sad ) \
{ \
uint32_t var = 0, sum = 0, sqr = 0; \
int x, y; \
for( y = 0; y < w; y++ ) \
{ \
for( x = 0; x < w; x++ ) \
{ \
sum += pix[x]; \
sqr += pix[x] * pix[x]; \
} \
pix += i_stride; \
} \
var = sqr - (sum * sum >> shift); \
*sad = sum; \
return var; \
}
PIXEL_VAR_C( x264_pixel_var_16x16, 16, 8 )
PIXEL_VAR_C( x264_pixel_var_8x8, 8, 6 )
#define HADAMARD4(d0,d1,d2,d3,s0,s1,s2,s3) {\
int t0 = s0 + s1;\
int t1 = s0 - s1;\
int t2 = s2 + s3;\
int t3 = s2 - s3;\
d0 = t0 + t2;\
d2 = t0 - t2;\
d1 = t1 + t3;\
d3 = t1 - t3;\
}
/****************************************************************************
* pixel_satd_WxH: sum of 4x4 Hadamard transformed differences
****************************************************************************/
static int pixel_satd_wxh( uint8_t *pix1, int i_pix1, uint8_t *pix2, int i_pix2, int i_width, int i_height )
{
int16_t tmp[4][4];
int x, y;
int i_satd = 0;
for( y = 0; y < i_height; y += 4 )
{
for( x = 0; x < i_width; x += 4 )
{
int i;
uint8_t *p1 = pix1+x, *p2 = pix2+x;
for( i=0; i<4; i++, p1+=i_pix1, p2+=i_pix2 )
{
int a0 = p1[0] - p2[0];
int a1 = p1[1] - p2[1];
int a2 = p1[2] - p2[2];
int a3 = p1[3] - p2[3];
HADAMARD4( tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3], a0,a1,a2,a3 );
}
for( i=0; i<4; i++ )
{
int a0,a1,a2,a3;
HADAMARD4( a0,a1,a2,a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i] );
i_satd += abs(a0) + abs(a1) + abs(a2) + abs(a3);
}
}
pix1 += 4 * i_pix1;
pix2 += 4 * i_pix2;
}
return i_satd / 2;
}
#define PIXEL_SATD_C( name, width, height ) \
static int name( uint8_t *pix1, int i_stride_pix1, \
uint8_t *pix2, int i_stride_pix2 ) \
{ \
return pixel_satd_wxh( pix1, i_stride_pix1, pix2, i_stride_pix2, width, height ); \
}
PIXEL_SATD_C( x264_pixel_satd_16x16, 16, 16 )
PIXEL_SATD_C( x264_pixel_satd_16x8, 16, 8 )
PIXEL_SATD_C( x264_pixel_satd_8x16, 8, 16 )
PIXEL_SATD_C( x264_pixel_satd_8x8, 8, 8 )
PIXEL_SATD_C( x264_pixel_satd_8x4, 8, 4 )
PIXEL_SATD_C( x264_pixel_satd_4x8, 4, 8 )
PIXEL_SATD_C( x264_pixel_satd_4x4, 4, 4 )
/****************************************************************************
* pixel_sa8d_WxH: sum of 8x8 Hadamard transformed differences
****************************************************************************/
#define SA8D_1D {\
int b0,b1,b2,b3,b4,b5,b6,b7;\
HADAMARD4( b0,b1,b2,b3, SRC(0), SRC(1), SRC(2), SRC(3) );\
HADAMARD4( b4,b5,b6,b7, SRC(4), SRC(5), SRC(6), SRC(7) );\
DST(0, b0 + b4);\
DST(4, b0 - b4);\
DST(1, b1 + b5);\
DST(5, b1 - b5);\
DST(2, b2 + b6);\
DST(6, b2 - b6);\
DST(3, b3 + b7);\
DST(7, b3 - b7);\
}
static inline int pixel_sa8d_wxh( uint8_t *pix1, int i_pix1, uint8_t *pix2, int i_pix2,
int i_width, int i_height )
{
int16_t diff[8][8];
int i_satd = 0;
int x, y;
for( y = 0; y < i_height; y += 8 )
{
for( x = 0; x < i_width; x += 8 )
{
int i;
uint8_t *p1 = pix1+x, *p2 = pix2+x;
#define SRC(x) a##x
#define DST(x,rhs) diff[i][x] = (rhs)
for( i=0; i<8; i++, p1+=i_pix1, p2+=i_pix2 )
{
int a0 = p1[0] - p2[0];
int a1 = p1[1] - p2[1];
int a2 = p1[2] - p2[2];
int a3 = p1[3] - p2[3];
int a4 = p1[4] - p2[4];
int a5 = p1[5] - p2[5];
int a6 = p1[6] - p2[6];
int a7 = p1[7] - p2[7];
SA8D_1D
}
#undef SRC
#undef DST
#define SRC(x) diff[x][i]
#define DST(x,rhs) i_satd += abs(rhs)
for( i=0; i<8; i++ )
SA8D_1D
#undef SRC
#undef DST
}
pix1 += 8 * i_pix1;
pix2 += 8 * i_pix2;
}
return i_satd;
}
#define PIXEL_SA8D_C( width, height ) \
static int x264_pixel_sa8d_##width##x##height( uint8_t *pix1, int i_stride_pix1, \
uint8_t *pix2, int i_stride_pix2 ) \
{ \
return ( pixel_sa8d_wxh( pix1, i_stride_pix1, pix2, i_stride_pix2, width, height ) + 2 ) >> 2; \
}
PIXEL_SA8D_C( 16, 16 )
PIXEL_SA8D_C( 16, 8 )
PIXEL_SA8D_C( 8, 16 )
PIXEL_SA8D_C( 8, 8 )
static uint64_t pixel_hadamard_ac( uint8_t *pix, int stride )
{
int16_t tmp[8][8];
int sum4=0, sum8=0;
int i;
for( i=0; i<8; i++, pix+=stride )
{
HADAMARD4( tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i],
pix[0], pix[1], pix[2], pix[3] );
HADAMARD4( tmp[4][i], tmp[5][i], tmp[6][i], tmp[7][i],
pix[4], pix[5], pix[6], pix[7] );
}
for( i=0; i<8; i++ )
{
int a0,a1,a2,a3,a4,a5,a6,a7;
HADAMARD4( a0,a1,a2,a3, tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3] );
sum4 += abs(a0) + abs(a1) + abs(a2) + abs(a3);
HADAMARD4( a4,a5,a6,a7, tmp[i][4], tmp[i][5], tmp[i][6], tmp[i][7] );
sum4 += abs(a4) + abs(a5) + abs(a6) + abs(a7);
tmp[i][0] = a0 + a4;
tmp[i][4] = a0 - a4;
tmp[i][1] = a1 + a5;
tmp[i][5] = a1 - a5;
tmp[i][2] = a2 + a6;
tmp[i][6] = a2 - a6;
tmp[i][3] = a3 + a7;
tmp[i][7] = a3 - a7;
}
for( i=0; i<8; i++ )
{
sum8 += abs( tmp[0][i] + tmp[4][i] )
+ abs( tmp[0][i] - tmp[4][i] )
+ abs( tmp[1][i] + tmp[5][i] )
+ abs( tmp[1][i] - tmp[5][i] )
+ abs( tmp[2][i] + tmp[6][i] )
+ abs( tmp[2][i] - tmp[6][i] )
+ abs( tmp[3][i] + tmp[7][i] )
+ abs( tmp[3][i] - tmp[7][i] );
}
sum4 -= tmp[0][0]+tmp[4][0];
sum8 -= tmp[0][0]+tmp[4][0];
return ((uint64_t)sum8<<32) + sum4;
}
#define HADAMARD_AC(w,h) \
static uint64_t x264_pixel_hadamard_ac_##w##x##h( uint8_t *pix, int stride )\
{\
uint64_t sum = pixel_hadamard_ac( pix, stride );\
if( w==16 )\
sum += pixel_hadamard_ac( pix+8, stride );\
if( h==16 )\
sum += pixel_hadamard_ac( pix+8*stride, stride );\
if( w==16 && h==16 )\
sum += pixel_hadamard_ac( pix+8*stride+8, stride );\
return ((sum>>34)<<32) + ((uint32_t)sum>>1);\
}
HADAMARD_AC( 16, 16 )
HADAMARD_AC( 16, 8 )
HADAMARD_AC( 8, 16 )
HADAMARD_AC( 8, 8 )
/****************************************************************************
* pixel_sad_x4
****************************************************************************/
#define SAD_X( size ) \
static void x264_pixel_sad_x3_##size( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, int i_stride, int scores[3] )\
{\
scores[0] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix0, i_stride );\
scores[1] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix1, i_stride );\
scores[2] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix2, i_stride );\
}\
static void x264_pixel_sad_x4_##size( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, uint8_t *pix3, int i_stride, int scores[4] )\
{\
scores[0] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix0, i_stride );\
scores[1] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix1, i_stride );\
scores[2] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix2, i_stride );\
scores[3] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix3, i_stride );\
}
SAD_X( 16x16 )
SAD_X( 16x8 )
SAD_X( 8x16 )
SAD_X( 8x8 )
SAD_X( 8x4 )
SAD_X( 4x8 )
SAD_X( 4x4 )
#ifdef ARCH_UltraSparc
SAD_X( 16x16_vis )
SAD_X( 16x8_vis )
SAD_X( 8x16_vis )
SAD_X( 8x8_vis )
#endif
/****************************************************************************
* pixel_satd_x4
* no faster than single satd, but needed for satd to be a drop-in replacement for sad
****************************************************************************/
#define SATD_X( size, cpu ) \
static void x264_pixel_satd_x3_##size##cpu( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, int i_stride, int scores[3] )\
{\
scores[0] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix0, i_stride );\
scores[1] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix1, i_stride );\
scores[2] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix2, i_stride );\
}\
static void x264_pixel_satd_x4_##size##cpu( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, uint8_t *pix3, int i_stride, int scores[4] )\
{\
scores[0] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix0, i_stride );\
scores[1] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix1, i_stride );\
scores[2] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix2, i_stride );\
scores[3] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix3, i_stride );\
}
#define SATD_X_DECL6( cpu )\
SATD_X( 16x16, cpu )\
SATD_X( 16x8, cpu )\
SATD_X( 8x16, cpu )\
SATD_X( 8x8, cpu )\
SATD_X( 8x4, cpu )\
SATD_X( 4x8, cpu )
#define SATD_X_DECL7( cpu )\
SATD_X_DECL6( cpu )\
SATD_X( 4x4, cpu )
SATD_X_DECL7()
#ifdef HAVE_MMX
SATD_X_DECL7( _mmxext )
SATD_X_DECL6( _sse2 )
SATD_X_DECL7( _ssse3 )
SATD_X_DECL6( _ssse3_phadd )
#endif
/****************************************************************************
* structural similarity metric
****************************************************************************/
static void ssim_4x4x2_core( const uint8_t *pix1, int stride1,
const uint8_t *pix2, int stride2,
int sums[2][4])
{
int x, y, z;
for(z=0; z<2; z++)
{
uint32_t s1=0, s2=0, ss=0, s12=0;
for(y=0; y<4; y++)
for(x=0; x<4; x++)
{
int a = pix1[x+y*stride1];
int b = pix2[x+y*stride2];
s1 += a;
s2 += b;
ss += a*a;
ss += b*b;
s12 += a*b;
}
sums[z][0] = s1;
sums[z][1] = s2;
sums[z][2] = ss;
sums[z][3] = s12;
pix1 += 4;
pix2 += 4;
}
}
static float ssim_end1( int s1, int s2, int ss, int s12 )
{
static const int ssim_c1 = (int)(.01*.01*255*255*64 + .5);
static const int ssim_c2 = (int)(.03*.03*255*255*64*63 + .5);
int vars = ss*64 - s1*s1 - s2*s2;
int covar = s12*64 - s1*s2;
return (float)(2*s1*s2 + ssim_c1) * (float)(2*covar + ssim_c2)\
/ ((float)(s1*s1 + s2*s2 + ssim_c1) * (float)(vars + ssim_c2));
}
static float ssim_end4( int sum0[5][4], int sum1[5][4], int width )
{
int i;
float ssim = 0.0;
for( i = 0; i < width; i++ )
ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0],
sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1],
sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2],
sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] );
return ssim;
}
float x264_pixel_ssim_wxh( x264_pixel_function_t *pf,
uint8_t *pix1, int stride1,
uint8_t *pix2, int stride2,
int width, int height )
{
int x, y, z;
float ssim = 0.0;
int (*sum0)[4] = x264_malloc(4 * (width/4+3) * sizeof(int));
int (*sum1)[4] = x264_malloc(4 * (width/4+3) * sizeof(int));
width >>= 2;
height >>= 2;
z = 0;
for( y = 1; y < height; y++ )
{
for( ; z <= y; z++ )
{
XCHG( void*, sum0, sum1 );
for( x = 0; x < width; x+=2 )
pf->ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] );
}
for( x = 0; x < width-1; x += 4 )
ssim += pf->ssim_end4( sum0+x, sum1+x, X264_MIN(4,width-x-1) );
}
x264_free(sum0);
x264_free(sum1);
return ssim;
}
/****************************************************************************
* successive elimination
****************************************************************************/
static int x264_pixel_ads4( int enc_dc[4], uint16_t *sums, int delta,
uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
{
int nmv=0, i;
for( i=0; i<width; i++, sums++ )
{
int ads = abs( enc_dc[0] - sums[0] )
+ abs( enc_dc[1] - sums[8] )
+ abs( enc_dc[2] - sums[delta] )
+ abs( enc_dc[3] - sums[delta+8] )
+ cost_mvx[i];
if( ads < thresh )
mvs[nmv++] = i;
}
return nmv;
}
static int x264_pixel_ads2( int enc_dc[2], uint16_t *sums, int delta,
uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
{
int nmv=0, i;
for( i=0; i<width; i++, sums++ )
{
int ads = abs( enc_dc[0] - sums[0] )
+ abs( enc_dc[1] - sums[delta] )
+ cost_mvx[i];
if( ads < thresh )
mvs[nmv++] = i;
}
return nmv;
}
static int x264_pixel_ads1( int enc_dc[1], uint16_t *sums, int delta,
uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
{
int nmv=0, i;
for( i=0; i<width; i++, sums++ )
{
int ads = abs( enc_dc[0] - sums[0] )
+ cost_mvx[i];
if( ads < thresh )
mvs[nmv++] = i;
}
return nmv;
}
/****************************************************************************
* x264_pixel_init:
****************************************************************************/
void x264_pixel_init( int cpu, x264_pixel_function_t *pixf )
{
memset( pixf, 0, sizeof(*pixf) );
#define INIT2_NAME( name1, name2, cpu ) \
pixf->name1[PIXEL_16x16] = x264_pixel_##name2##_16x16##cpu;\
pixf->name1[PIXEL_16x8] = x264_pixel_##name2##_16x8##cpu;
#define INIT4_NAME( name1, name2, cpu ) \
INIT2_NAME( name1, name2, cpu ) \
pixf->name1[PIXEL_8x16] = x264_pixel_##name2##_8x16##cpu;\
pixf->name1[PIXEL_8x8] = x264_pixel_##name2##_8x8##cpu;
#define INIT5_NAME( name1, name2, cpu ) \
INIT4_NAME( name1, name2, cpu ) \
pixf->name1[PIXEL_8x4] = x264_pixel_##name2##_8x4##cpu;
#define INIT6_NAME( name1, name2, cpu ) \
INIT5_NAME( name1, name2, cpu ) \
pixf->name1[PIXEL_4x8] = x264_pixel_##name2##_4x8##cpu;
#define INIT7_NAME( name1, name2, cpu ) \
INIT6_NAME( name1, name2, cpu ) \
pixf->name1[PIXEL_4x4] = x264_pixel_##name2##_4x4##cpu;
#define INIT2( name, cpu ) INIT2_NAME( name, name, cpu )
#define INIT4( name, cpu ) INIT4_NAME( name, name, cpu )
#define INIT5( name, cpu ) INIT5_NAME( name, name, cpu )
#define INIT6( name, cpu ) INIT6_NAME( name, name, cpu )
#define INIT7( name, cpu ) INIT7_NAME( name, name, cpu )
#define INIT_ADS( cpu ) \
pixf->ads[PIXEL_16x16] = x264_pixel_ads4##cpu;\
pixf->ads[PIXEL_16x8] = x264_pixel_ads2##cpu;\
pixf->ads[PIXEL_8x8] = x264_pixel_ads1##cpu;
INIT7( sad, );
INIT7_NAME( sad_aligned, sad, );
INIT7( sad_x3, );
INIT7( sad_x4, );
INIT7( ssd, );
INIT7( satd, );
INIT7( satd_x3, );
INIT7( satd_x4, );
INIT4( sa8d, );
INIT4( hadamard_ac, );
INIT_ADS( );
pixf->var[PIXEL_16x16] = x264_pixel_var_16x16;
pixf->var[PIXEL_8x8] = x264_pixel_var_8x8;
pixf->ssim_4x4x2_core = ssim_4x4x2_core;
pixf->ssim_end4 = ssim_end4;
#ifdef HAVE_MMX
if( cpu&X264_CPU_MMX )
{
INIT7( ssd, _mmx );
}
if( cpu&X264_CPU_MMXEXT )
{
INIT7( sad, _mmxext );
INIT7_NAME( sad_aligned, sad, _mmxext );
INIT7( sad_x3, _mmxext );
INIT7( sad_x4, _mmxext );
INIT7( satd, _mmxext );
INIT7( satd_x3, _mmxext );
INIT7( satd_x4, _mmxext );
INIT4( hadamard_ac, _mmxext );
INIT_ADS( _mmxext );
pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_mmxext;
pixf->var[PIXEL_8x8] = x264_pixel_var_8x8_mmxext;
#ifdef ARCH_X86
pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_mmxext;
pixf->sa8d[PIXEL_8x8] = x264_pixel_sa8d_8x8_mmxext;
pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_mmxext;
pixf->ssim_4x4x2_core = x264_pixel_ssim_4x4x2_core_mmxext;
if( cpu&X264_CPU_CACHELINE_32 )
{
INIT5( sad, _cache32_mmxext );
INIT4( sad_x3, _cache32_mmxext );
INIT4( sad_x4, _cache32_mmxext );
}
else if( cpu&X264_CPU_CACHELINE_64 )
{
INIT5( sad, _cache64_mmxext );
INIT4( sad_x3, _cache64_mmxext );
INIT4( sad_x4, _cache64_mmxext );
}
#else
if( cpu&X264_CPU_CACHELINE_64 )
{
pixf->sad[PIXEL_8x16] = x264_pixel_sad_8x16_cache64_mmxext;
pixf->sad[PIXEL_8x8] = x264_pixel_sad_8x8_cache64_mmxext;
pixf->sad[PIXEL_8x4] = x264_pixel_sad_8x4_cache64_mmxext;
pixf->sad_x3[PIXEL_8x16] = x264_pixel_sad_x3_8x16_cache64_mmxext;
pixf->sad_x3[PIXEL_8x8] = x264_pixel_sad_x3_8x8_cache64_mmxext;
pixf->sad_x4[PIXEL_8x16] = x264_pixel_sad_x4_8x16_cache64_mmxext;
pixf->sad_x4[PIXEL_8x8] = x264_pixel_sad_x4_8x8_cache64_mmxext;
}
#endif
pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16_mmxext;
pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16_mmxext;
pixf->intra_satd_x3_8x8c = x264_intra_satd_x3_8x8c_mmxext;
pixf->intra_satd_x3_4x4 = x264_intra_satd_x3_4x4_mmxext;
}
if( (cpu&X264_CPU_SSE2) && !(cpu&X264_CPU_SSE2_IS_SLOW) )
{
INIT2( sad, _sse2 );
INIT2( sad_x3, _sse2 );
INIT2( sad_x4, _sse2 );
if( !(cpu&X264_CPU_STACK_MOD4) )
{
INIT4( hadamard_ac, _sse2 );
}
INIT_ADS( _sse2 );
pixf->var[PIXEL_8x8] = x264_pixel_var_8x8_sse2;
pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16_sse2;
#ifdef ARCH_X86
if( cpu&X264_CPU_CACHELINE_64 )
{
INIT2( sad, _cache64_sse2 );
INIT2( sad_x3, _cache64_sse2 );
INIT2( sad_x4, _cache64_sse2 );
}
#endif
if( cpu&X264_CPU_SSE_MISALIGN )
{
INIT2( sad_x3, _sse2_misalign );
INIT2( sad_x4, _sse2_misalign );
}
}
if( cpu&X264_CPU_SSE2 )
{
INIT5( ssd, _sse2 );
if( cpu&X264_CPU_SSE2_IS_FAST )
{
INIT6( satd, _sse2 );
INIT6( satd_x3, _sse2 );
INIT6( satd_x4, _sse2 );
}
else
{
INIT5( satd, _sse2 );
INIT5( satd_x3, _sse2 );
INIT5( satd_x4, _sse2 );
}
INIT2_NAME( sad_aligned, sad, _sse2_aligned );
pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_sse2;
pixf->ssim_4x4x2_core = x264_pixel_ssim_4x4x2_core_sse2;
pixf->ssim_end4 = x264_pixel_ssim_end4_sse2;
pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_sse2;
pixf->sa8d[PIXEL_8x8] = x264_pixel_sa8d_8x8_sse2;
#ifdef ARCH_X86_64
pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_sse2;
#endif
}
if( cpu&X264_CPU_SSE2_IS_FAST && !(cpu&X264_CPU_CACHELINE_64) )
{
pixf->sad_aligned[PIXEL_8x16] = x264_pixel_sad_8x16_sse2;
pixf->sad[PIXEL_8x16] = x264_pixel_sad_8x16_sse2;
pixf->sad_x3[PIXEL_8x16] = x264_pixel_sad_x3_8x16_sse2;
pixf->sad_x3[PIXEL_8x8] = x264_pixel_sad_x3_8x8_sse2;
pixf->sad_x3[PIXEL_8x4] = x264_pixel_sad_x3_8x4_sse2;
pixf->sad_x4[PIXEL_8x16] = x264_pixel_sad_x4_8x16_sse2;
pixf->sad_x4[PIXEL_8x8] = x264_pixel_sad_x4_8x8_sse2;
pixf->sad_x4[PIXEL_8x4] = x264_pixel_sad_x4_8x4_sse2;
}
if( (cpu&X264_CPU_SSE3) && (cpu&X264_CPU_CACHELINE_64) )
{
INIT2( sad, _sse3 );
INIT2( sad_x3, _sse3 );
INIT2( sad_x4, _sse3 );
}
if( cpu&X264_CPU_SSSE3 )
{
INIT7( satd, _ssse3 );
INIT7( satd_x3, _ssse3 );
INIT7( satd_x4, _ssse3 );
if( !(cpu&X264_CPU_STACK_MOD4) )
{
INIT4( hadamard_ac, _ssse3 );
}
INIT_ADS( _ssse3 );
pixf->sa8d[PIXEL_16x16]= x264_pixel_sa8d_16x16_ssse3;
pixf->sa8d[PIXEL_8x8] = x264_pixel_sa8d_8x8_ssse3;
pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16_ssse3;
pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16_ssse3;
pixf->intra_satd_x3_8x8c = x264_intra_satd_x3_8x8c_ssse3;
pixf->intra_satd_x3_4x4 = x264_intra_satd_x3_4x4_ssse3;
#ifdef ARCH_X86_64
pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_ssse3;
#endif
if( cpu&X264_CPU_CACHELINE_64 )
{
INIT2( sad, _cache64_ssse3 );
INIT2( sad_x3, _cache64_ssse3 );
INIT2( sad_x4, _cache64_ssse3 );
}
if( cpu&X264_CPU_PHADD_IS_FAST )
{
INIT6( satd, _ssse3_phadd );
INIT6( satd_x3, _ssse3_phadd );
INIT6( satd_x4, _ssse3_phadd );
}
}
if( cpu&X264_CPU_SSE4 )
{
pixf->ssd[PIXEL_4x8] = x264_pixel_ssd_4x8_sse4;
pixf->ssd[PIXEL_4x4] = x264_pixel_ssd_4x4_sse4;
}
#endif //HAVE_MMX
#ifdef ARCH_PPC
if( cpu&X264_CPU_ALTIVEC )
{
x264_pixel_altivec_init( pixf );
}
#endif
#ifdef ARCH_UltraSparc
INIT4( sad, _vis );
INIT4( sad_x3, _vis );
INIT4( sad_x4, _vis );
#endif
pixf->ads[PIXEL_8x16] =
pixf->ads[PIXEL_8x4] =
pixf->ads[PIXEL_4x8] = pixf->ads[PIXEL_16x8];
pixf->ads[PIXEL_4x4] = pixf->ads[PIXEL_8x8];
}