blob: b9b718d3a7632aa185f4b4472f019d008aafdac5 [file] [log] [blame]
/*****************************************************************************
* ppccommon.h: h264 encoder
*****************************************************************************
* Copyright (C) 2003 Eric Petit <eric.petit@lapsus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
/***********************************************************************
* For constant vectors, use parentheses on OS X and braces on Linux
**********************************************************************/
#ifdef SYS_MACOSX
#define CV(a...) (a)
#else
#define CV(a...) {a}
#endif
/***********************************************************************
* Vector types
**********************************************************************/
#define vec_u8_t vector unsigned char
#define vec_s8_t vector signed char
#define vec_u16_t vector unsigned short
#define vec_s16_t vector signed short
#define vec_u32_t vector unsigned int
#define vec_s32_t vector signed int
typedef union {
unsigned int s[4];
vector unsigned int v;
} vect_int_u;
typedef union {
unsigned short s[8];
vector unsigned short v;
} vect_ushort_u;
typedef union {
signed short s[8];
vector signed short v;
} vect_sshort_u;
/***********************************************************************
* Null vector
**********************************************************************/
#define LOAD_ZERO const vec_u8_t zerov = vec_splat_u8( 0 )
#define zero_u8v (vec_u8_t) zerov
#define zero_s8v (vec_s8_t) zerov
#define zero_u16v (vec_u16_t) zerov
#define zero_s16v (vec_s16_t) zerov
#define zero_u32v (vec_u32_t) zerov
#define zero_s32v (vec_s32_t) zerov
/***********************************************************************
* 8 <-> 16 bits conversions
**********************************************************************/
#define vec_u8_to_u16_h(v) (vec_u16_t) vec_mergeh( zero_u8v, (vec_u8_t) v )
#define vec_u8_to_u16_l(v) (vec_u16_t) vec_mergel( zero_u8v, (vec_u8_t) v )
#define vec_u8_to_s16_h(v) (vec_s16_t) vec_mergeh( zero_u8v, (vec_u8_t) v )
#define vec_u8_to_s16_l(v) (vec_s16_t) vec_mergel( zero_u8v, (vec_u8_t) v )
#define vec_u8_to_u16(v) vec_u8_to_u16_h(v)
#define vec_u8_to_s16(v) vec_u8_to_s16_h(v)
#define vec_u16_to_u8(v) vec_pack( v, zero_u16v )
#define vec_s16_to_u8(v) vec_packsu( v, zero_s16v )
/***********************************************************************
* PREP_LOAD: declares two vectors required to perform unaligned loads
* VEC_LOAD: loads n bytes from u8 * p into vector v of type t where o is from original src offset
* VEC_LOAD:_G: loads n bytes from u8 * p into vectory v of type t - use when offset is not known
* VEC_LOAD_OFFSET: as above, but with offset vector known in advance
**********************************************************************/
#define PREP_LOAD \
vec_u8_t _hv, _lv
#define PREP_LOAD_SRC( src ) \
vec_u8_t _##src##_ = vec_lvsl(0, src)
#define VEC_LOAD_G( p, v, n, t ) \
_hv = vec_ld( 0, p ); \
v = (t) vec_lvsl( 0, p ); \
_lv = vec_ld( n - 1, p ); \
v = (t) vec_perm( _hv, _lv, (vec_u8_t) v )
#define VEC_LOAD( p, v, n, t, g ) \
_hv = vec_ld( 0, p ); \
_lv = vec_ld( n - 1, p ); \
v = (t) vec_perm( _hv, _lv, (vec_u8_t) _##g##_ )
#define VEC_LOAD_OFFSET( p, v, n, t, o ) \
_hv = vec_ld( 0, p); \
_lv = vec_ld( n - 1, p ); \
v = (t) vec_perm( _hv, _lv, (vec_u8_t) o )
#define VEC_LOAD_PARTIAL( p, v, n, t, g) \
_hv = vec_ld( 0, p); \
v = (t) vec_perm( _hv, _hv, (vec_u8_t) _##g##_ )
/***********************************************************************
* PREP_STORE##n: declares required vectors to store n bytes to a
* potentially unaligned address
* VEC_STORE##n: stores n bytes from vector v to address p
**********************************************************************/
#define PREP_STORE16 \
vec_u8_t _tmp1v \
#define PREP_STORE16_DST( dst ) \
vec_u8_t _##dst##l_ = vec_lvsl(0, dst); \
vec_u8_t _##dst##r_ = vec_lvsr(0, dst);
#define VEC_STORE16( v, p, o ) \
_hv = vec_ld( 0, p ); \
_lv = vec_ld( 15, p ); \
_tmp1v = vec_perm( _lv, _hv, _##o##l_ ); \
_lv = vec_perm( (vec_u8_t) v, _tmp1v, _##o##r_ ); \
vec_st( _lv, 15, (uint8_t *) p ); \
_hv = vec_perm( _tmp1v, (vec_u8_t) v, _##o##r_ ); \
vec_st( _hv, 0, (uint8_t *) p )
#define PREP_STORE8 \
vec_u8_t _tmp3v \
#define VEC_STORE8( v, p ) \
_tmp3v = vec_lvsl(0, p); \
v = vec_perm(v, v, _tmp3v); \
vec_ste((vec_u32_t)v,0,(uint32_t*)p); \
vec_ste((vec_u32_t)v,4,(uint32_t*)p)
#define PREP_STORE4 \
PREP_STORE16; \
vec_u8_t _tmp2v, _tmp3v; \
const vec_u8_t sel = \
(vec_u8_t) CV(-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0)
#define VEC_STORE4( v, p ) \
_tmp3v = vec_lvsr( 0, p ); \
v = vec_perm( v, v, _tmp3v ); \
_lv = vec_ld( 3, p ); \
_tmp1v = vec_perm( sel, zero_u8v, _tmp3v ); \
_lv = vec_sel( _lv, v, _tmp1v ); \
vec_st( _lv, 3, p ); \
_hv = vec_ld( 0, p ); \
_tmp2v = vec_perm( zero_u8v, sel, _tmp3v ); \
_hv = vec_sel( _hv, v, _tmp2v ); \
vec_st( _hv, 0, p )
/***********************************************************************
* VEC_TRANSPOSE_8
***********************************************************************
* Transposes a 8x8 matrix of s16 vectors
**********************************************************************/
#define VEC_TRANSPOSE_8(a0,a1,a2,a3,a4,a5,a6,a7,b0,b1,b2,b3,b4,b5,b6,b7) \
b0 = vec_mergeh( a0, a4 ); \
b1 = vec_mergel( a0, a4 ); \
b2 = vec_mergeh( a1, a5 ); \
b3 = vec_mergel( a1, a5 ); \
b4 = vec_mergeh( a2, a6 ); \
b5 = vec_mergel( a2, a6 ); \
b6 = vec_mergeh( a3, a7 ); \
b7 = vec_mergel( a3, a7 ); \
a0 = vec_mergeh( b0, b4 ); \
a1 = vec_mergel( b0, b4 ); \
a2 = vec_mergeh( b1, b5 ); \
a3 = vec_mergel( b1, b5 ); \
a4 = vec_mergeh( b2, b6 ); \
a5 = vec_mergel( b2, b6 ); \
a6 = vec_mergeh( b3, b7 ); \
a7 = vec_mergel( b3, b7 ); \
b0 = vec_mergeh( a0, a4 ); \
b1 = vec_mergel( a0, a4 ); \
b2 = vec_mergeh( a1, a5 ); \
b3 = vec_mergel( a1, a5 ); \
b4 = vec_mergeh( a2, a6 ); \
b5 = vec_mergel( a2, a6 ); \
b6 = vec_mergeh( a3, a7 ); \
b7 = vec_mergel( a3, a7 )
/***********************************************************************
* VEC_TRANSPOSE_4
***********************************************************************
* Transposes a 4x4 matrix of s16 vectors.
* Actually source and destination are 8x4. The low elements of the
* source are discarded and the low elements of the destination mustn't
* be used.
**********************************************************************/
#define VEC_TRANSPOSE_4(a0,a1,a2,a3,b0,b1,b2,b3) \
b0 = vec_mergeh( a0, a0 ); \
b1 = vec_mergeh( a1, a0 ); \
b2 = vec_mergeh( a2, a0 ); \
b3 = vec_mergeh( a3, a0 ); \
a0 = vec_mergeh( b0, b2 ); \
a1 = vec_mergel( b0, b2 ); \
a2 = vec_mergeh( b1, b3 ); \
a3 = vec_mergel( b1, b3 ); \
b0 = vec_mergeh( a0, a2 ); \
b1 = vec_mergel( a0, a2 ); \
b2 = vec_mergeh( a1, a3 ); \
b3 = vec_mergel( a1, a3 )
/***********************************************************************
* VEC_DIFF_H
***********************************************************************
* p1, p2: u8 *
* i1, i2, n: int
* d: s16v
*
* Loads n bytes from p1 and p2, do the diff of the high elements into
* d, increments p1 and p2 by i1 and i2 into known offset g
**********************************************************************/
#define PREP_DIFF \
LOAD_ZERO; \
PREP_LOAD; \
vec_s16_t pix1v, pix2v;
#define VEC_DIFF_H(p1,i1,p2,i2,n,d,g) \
VEC_LOAD_PARTIAL( p1, pix1v, n, vec_s16_t, p1); \
pix1v = vec_u8_to_s16( pix1v ); \
VEC_LOAD( p2, pix2v, n, vec_s16_t, g); \
pix2v = vec_u8_to_s16( pix2v ); \
d = vec_sub( pix1v, pix2v ); \
p1 += i1; \
p2 += i2
/***********************************************************************
* VEC_DIFF_HL
***********************************************************************
* p1, p2: u8 *
* i1, i2: int
* dh, dl: s16v
*
* Loads 16 bytes from p1 and p2, do the diff of the high elements into
* dh, the diff of the low elements into dl, increments p1 and p2 by i1
* and i2
**********************************************************************/
#define VEC_DIFF_HL(p1,i1,p2,i2,dh,dl) \
pix1v = (vec_s16_t)vec_ld(0, p1); \
temp0v = vec_u8_to_s16_h( pix1v ); \
temp1v = vec_u8_to_s16_l( pix1v ); \
VEC_LOAD( p2, pix2v, 16, vec_s16_t, p2); \
temp2v = vec_u8_to_s16_h( pix2v ); \
temp3v = vec_u8_to_s16_l( pix2v ); \
dh = vec_sub( temp0v, temp2v ); \
dl = vec_sub( temp1v, temp3v ); \
p1 += i1; \
p2 += i2
/***********************************************************************
* VEC_DIFF_H_8BYTE_ALIGNED
***********************************************************************
* p1, p2: u8 *
* i1, i2, n: int
* d: s16v
*
* Loads n bytes from p1 and p2, do the diff of the high elements into
* d, increments p1 and p2 by i1 and i2
* Slightly faster when we know we are loading/diffing 8bytes which
* are 8 byte aligned. Reduces need for two loads and two vec_lvsl()'s
**********************************************************************/
#define PREP_DIFF_8BYTEALIGNED \
LOAD_ZERO; \
vec_s16_t pix1v, pix2v; \
vec_u8_t pix1v8, pix2v8; \
vec_u8_t permPix1, permPix2; \
permPix1 = vec_lvsl(0, pix1); \
permPix2 = vec_lvsl(0, pix2); \
#define VEC_DIFF_H_8BYTE_ALIGNED(p1,i1,p2,i2,n,d) \
pix1v8 = vec_perm(vec_ld(0,p1), zero_u8v, permPix1); \
pix2v8 = vec_perm(vec_ld(0, p2), zero_u8v, permPix2); \
pix1v = vec_u8_to_s16( pix1v8 ); \
pix2v = vec_u8_to_s16( pix2v8 ); \
d = vec_sub( pix1v, pix2v); \
p1 += i1; \
p2 += i2;