blob: 9a66ed9257c4744c97c1ab738a1539f1c1362f28 [file] [log] [blame]
/*****************************************************************************
* predict.c: h264 encoder
*****************************************************************************
* Copyright (C) 2003-2008 x264 project
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
* Jason Garrett-Glaser <darkshikari@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
/* predict4x4 are inspired from ffmpeg h264 decoder */
#include "common.h"
#ifdef HAVE_MMX
# include "x86/predict.h"
#endif
#ifdef ARCH_PPC
# include "ppc/predict.h"
#endif
/****************************************************************************
* 16x16 prediction for intra luma block
****************************************************************************/
#define PREDICT_16x16_DC(v) \
for( i = 0; i < 16; i++ )\
{\
uint32_t *p = (uint32_t*)src;\
*p++ = v;\
*p++ = v;\
*p++ = v;\
*p++ = v;\
src += FDEC_STRIDE;\
}
static void predict_16x16_dc( uint8_t *src )
{
uint32_t dc = 0;
int i;
for( i = 0; i < 16; i++ )
{
dc += src[-1 + i * FDEC_STRIDE];
dc += src[i - FDEC_STRIDE];
}
dc = (( dc + 16 ) >> 5) * 0x01010101;
PREDICT_16x16_DC(dc);
}
static void predict_16x16_dc_left( uint8_t *src )
{
uint32_t dc = 0;
int i;
for( i = 0; i < 16; i++ )
{
dc += src[-1 + i * FDEC_STRIDE];
}
dc = (( dc + 8 ) >> 4) * 0x01010101;
PREDICT_16x16_DC(dc);
}
static void predict_16x16_dc_top( uint8_t *src )
{
uint32_t dc = 0;
int i;
for( i = 0; i < 16; i++ )
{
dc += src[i - FDEC_STRIDE];
}
dc = (( dc + 8 ) >> 4) * 0x01010101;
PREDICT_16x16_DC(dc);
}
static void predict_16x16_dc_128( uint8_t *src )
{
int i;
PREDICT_16x16_DC(0x80808080);
}
static void predict_16x16_h( uint8_t *src )
{
int i;
for( i = 0; i < 16; i++ )
{
const uint32_t v = 0x01010101 * src[-1];
uint32_t *p = (uint32_t*)src;
*p++ = v;
*p++ = v;
*p++ = v;
*p++ = v;
src += FDEC_STRIDE;
}
}
static void predict_16x16_v( uint8_t *src )
{
uint32_t v0 = *(uint32_t*)&src[ 0-FDEC_STRIDE];
uint32_t v1 = *(uint32_t*)&src[ 4-FDEC_STRIDE];
uint32_t v2 = *(uint32_t*)&src[ 8-FDEC_STRIDE];
uint32_t v3 = *(uint32_t*)&src[12-FDEC_STRIDE];
int i;
for( i = 0; i < 16; i++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = v0;
*p++ = v1;
*p++ = v2;
*p++ = v3;
src += FDEC_STRIDE;
}
}
static void predict_16x16_p( uint8_t *src )
{
int x, y, i;
int a, b, c;
int H = 0;
int V = 0;
int i00;
/* calculate H and V */
for( i = 0; i <= 7; i++ )
{
H += ( i + 1 ) * ( src[ 8 + i - FDEC_STRIDE ] - src[6 -i -FDEC_STRIDE] );
V += ( i + 1 ) * ( src[-1 + (8+i)*FDEC_STRIDE] - src[-1 + (6-i)*FDEC_STRIDE] );
}
a = 16 * ( src[-1 + 15*FDEC_STRIDE] + src[15 - FDEC_STRIDE] );
b = ( 5 * H + 32 ) >> 6;
c = ( 5 * V + 32 ) >> 6;
i00 = a - b * 7 - c * 7 + 16;
for( y = 0; y < 16; y++ )
{
int pix = i00;
for( x = 0; x < 16; x++ )
{
src[x] = x264_clip_uint8( pix>>5 );
pix += b;
}
src += FDEC_STRIDE;
i00 += c;
}
}
/****************************************************************************
* 8x8 prediction for intra chroma block
****************************************************************************/
static void predict_8x8c_dc_128( uint8_t *src )
{
int y;
for( y = 0; y < 8; y++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = 0x80808080;
*p++ = 0x80808080;
src += FDEC_STRIDE;
}
}
static void predict_8x8c_dc_left( uint8_t *src )
{
int y;
uint32_t dc0 = 0, dc1 = 0;
for( y = 0; y < 4; y++ )
{
dc0 += src[y * FDEC_STRIDE - 1];
dc1 += src[(y+4) * FDEC_STRIDE - 1];
}
dc0 = (( dc0 + 2 ) >> 2)*0x01010101;
dc1 = (( dc1 + 2 ) >> 2)*0x01010101;
for( y = 0; y < 4; y++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = dc0;
*p++ = dc0;
src += FDEC_STRIDE;
}
for( y = 0; y < 4; y++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = dc1;
*p++ = dc1;
src += FDEC_STRIDE;
}
}
static void predict_8x8c_dc_top( uint8_t *src )
{
int y, x;
uint32_t dc0 = 0, dc1 = 0;
for( x = 0; x < 4; x++ )
{
dc0 += src[x - FDEC_STRIDE];
dc1 += src[x + 4 - FDEC_STRIDE];
}
dc0 = (( dc0 + 2 ) >> 2)*0x01010101;
dc1 = (( dc1 + 2 ) >> 2)*0x01010101;
for( y = 0; y < 8; y++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = dc0;
*p++ = dc1;
src += FDEC_STRIDE;
}
}
static void predict_8x8c_dc( uint8_t *src )
{
int y;
int s0 = 0, s1 = 0, s2 = 0, s3 = 0;
uint32_t dc0, dc1, dc2, dc3;
int i;
/*
s0 s1
s2
s3
*/
for( i = 0; i < 4; i++ )
{
s0 += src[i - FDEC_STRIDE];
s1 += src[i + 4 - FDEC_STRIDE];
s2 += src[-1 + i * FDEC_STRIDE];
s3 += src[-1 + (i+4)*FDEC_STRIDE];
}
/*
dc0 dc1
dc2 dc3
*/
dc0 = (( s0 + s2 + 4 ) >> 3)*0x01010101;
dc1 = (( s1 + 2 ) >> 2)*0x01010101;
dc2 = (( s3 + 2 ) >> 2)*0x01010101;
dc3 = (( s1 + s3 + 4 ) >> 3)*0x01010101;
for( y = 0; y < 4; y++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = dc0;
*p++ = dc1;
src += FDEC_STRIDE;
}
for( y = 0; y < 4; y++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = dc2;
*p++ = dc3;
src += FDEC_STRIDE;
}
}
static void predict_8x8c_h( uint8_t *src )
{
int i;
for( i = 0; i < 8; i++ )
{
uint32_t v = 0x01010101 * src[-1];
uint32_t *p = (uint32_t*)src;
*p++ = v;
*p++ = v;
src += FDEC_STRIDE;
}
}
static void predict_8x8c_v( uint8_t *src )
{
uint32_t v0 = *(uint32_t*)&src[0-FDEC_STRIDE];
uint32_t v1 = *(uint32_t*)&src[4-FDEC_STRIDE];
int i;
for( i = 0; i < 8; i++ )
{
uint32_t *p = (uint32_t*)src;
*p++ = v0;
*p++ = v1;
src += FDEC_STRIDE;
}
}
static void predict_8x8c_p( uint8_t *src )
{
int i;
int x,y;
int a, b, c;
int H = 0;
int V = 0;
int i00;
for( i = 0; i < 4; i++ )
{
H += ( i + 1 ) * ( src[4+i - FDEC_STRIDE] - src[2 - i -FDEC_STRIDE] );
V += ( i + 1 ) * ( src[-1 +(i+4)*FDEC_STRIDE] - src[-1+(2-i)*FDEC_STRIDE] );
}
a = 16 * ( src[-1+7*FDEC_STRIDE] + src[7 - FDEC_STRIDE] );
b = ( 17 * H + 16 ) >> 5;
c = ( 17 * V + 16 ) >> 5;
i00 = a -3*b -3*c + 16;
for( y = 0; y < 8; y++ )
{
int pix = i00;
for( x = 0; x < 8; x++ )
{
src[x] = x264_clip_uint8( pix>>5 );
pix += b;
}
src += FDEC_STRIDE;
i00 += c;
}
}
/****************************************************************************
* 4x4 prediction for intra luma block
****************************************************************************/
#define SRC(x,y) src[(x)+(y)*FDEC_STRIDE]
#define SRC32(x,y) *(uint32_t*)&SRC(x,y)
#define PREDICT_4x4_DC(v)\
SRC32(0,0) = SRC32(0,1) = SRC32(0,2) = SRC32(0,3) = v;
static void predict_4x4_dc_128( uint8_t *src )
{
PREDICT_4x4_DC(0x80808080);
}
static void predict_4x4_dc_left( uint8_t *src )
{
uint32_t dc = ((SRC(-1,0) + SRC(-1,1) + SRC(-1,2) + SRC(-1,3) + 2) >> 2) * 0x01010101;
PREDICT_4x4_DC(dc);
}
static void predict_4x4_dc_top( uint8_t *src )
{
uint32_t dc = ((SRC(0,-1) + SRC(1,-1) + SRC(2,-1) + SRC(3,-1) + 2) >> 2) * 0x01010101;
PREDICT_4x4_DC(dc);
}
static void predict_4x4_dc( uint8_t *src )
{
uint32_t dc = ((SRC(-1,0) + SRC(-1,1) + SRC(-1,2) + SRC(-1,3) +
SRC(0,-1) + SRC(1,-1) + SRC(2,-1) + SRC(3,-1) + 4) >> 3) * 0x01010101;
PREDICT_4x4_DC(dc);
}
static void predict_4x4_h( uint8_t *src )
{
SRC32(0,0) = SRC(-1,0) * 0x01010101;
SRC32(0,1) = SRC(-1,1) * 0x01010101;
SRC32(0,2) = SRC(-1,2) * 0x01010101;
SRC32(0,3) = SRC(-1,3) * 0x01010101;
}
static void predict_4x4_v( uint8_t *src )
{
PREDICT_4x4_DC(SRC32(0,-1));
}
#define PREDICT_4x4_LOAD_LEFT\
const int l0 = SRC(-1,0);\
const int l1 = SRC(-1,1);\
const int l2 = SRC(-1,2);\
UNUSED const int l3 = SRC(-1,3);
#define PREDICT_4x4_LOAD_TOP\
const int t0 = SRC(0,-1);\
const int t1 = SRC(1,-1);\
const int t2 = SRC(2,-1);\
UNUSED const int t3 = SRC(3,-1);
#define PREDICT_4x4_LOAD_TOP_RIGHT\
const int t4 = SRC(4,-1);\
const int t5 = SRC(5,-1);\
const int t6 = SRC(6,-1);\
UNUSED const int t7 = SRC(7,-1);
#define F1(a,b) (((a)+(b)+1)>>1)
#define F2(a,b,c) (((a)+2*(b)+(c)+2)>>2)
static void predict_4x4_ddl( uint8_t *src )
{
PREDICT_4x4_LOAD_TOP
PREDICT_4x4_LOAD_TOP_RIGHT
SRC(0,0)= F2(t0,t1,t2);
SRC(1,0)=SRC(0,1)= F2(t1,t2,t3);
SRC(2,0)=SRC(1,1)=SRC(0,2)= F2(t2,t3,t4);
SRC(3,0)=SRC(2,1)=SRC(1,2)=SRC(0,3)= F2(t3,t4,t5);
SRC(3,1)=SRC(2,2)=SRC(1,3)= F2(t4,t5,t6);
SRC(3,2)=SRC(2,3)= F2(t5,t6,t7);
SRC(3,3)= F2(t6,t7,t7);
}
static void predict_4x4_ddr( uint8_t *src )
{
const int lt = SRC(-1,-1);
PREDICT_4x4_LOAD_LEFT
PREDICT_4x4_LOAD_TOP
SRC(3,0)= F2(t3,t2,t1);
SRC(2,0)=SRC(3,1)= F2(t2,t1,t0);
SRC(1,0)=SRC(2,1)=SRC(3,2)= F2(t1,t0,lt);
SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)= F2(t0,lt,l0);
SRC(0,1)=SRC(1,2)=SRC(2,3)= F2(lt,l0,l1);
SRC(0,2)=SRC(1,3)= F2(l0,l1,l2);
SRC(0,3)= F2(l1,l2,l3);
}
static void predict_4x4_vr( uint8_t *src )
{
const int lt = SRC(-1,-1);
PREDICT_4x4_LOAD_LEFT
PREDICT_4x4_LOAD_TOP
SRC(0,3)= F2(l2,l1,l0);
SRC(0,2)= F2(l1,l0,lt);
SRC(0,1)=SRC(1,3)= F2(l0,lt,t0);
SRC(0,0)=SRC(1,2)= F1(lt,t0);
SRC(1,1)=SRC(2,3)= F2(lt,t0,t1);
SRC(1,0)=SRC(2,2)= F1(t0,t1);
SRC(2,1)=SRC(3,3)= F2(t0,t1,t2);
SRC(2,0)=SRC(3,2)= F1(t1,t2);
SRC(3,1)= F2(t1,t2,t3);
SRC(3,0)= F1(t2,t3);
}
static void predict_4x4_hd( uint8_t *src )
{
const int lt= SRC(-1,-1);
PREDICT_4x4_LOAD_LEFT
PREDICT_4x4_LOAD_TOP
SRC(0,3)= F1(l2,l3);
SRC(1,3)= F2(l1,l2,l3);
SRC(0,2)=SRC(2,3)= F1(l1,l2);
SRC(1,2)=SRC(3,3)= F2(l0,l1,l2);
SRC(0,1)=SRC(2,2)= F1(l0,l1);
SRC(1,1)=SRC(3,2)= F2(lt,l0,l1);
SRC(0,0)=SRC(2,1)= F1(lt,l0);
SRC(1,0)=SRC(3,1)= F2(t0,lt,l0);
SRC(2,0)= F2(t1,t0,lt);
SRC(3,0)= F2(t2,t1,t0);
}
static void predict_4x4_vl( uint8_t *src )
{
PREDICT_4x4_LOAD_TOP
PREDICT_4x4_LOAD_TOP_RIGHT
SRC(0,0)= F1(t0,t1);
SRC(0,1)= F2(t0,t1,t2);
SRC(1,0)=SRC(0,2)= F1(t1,t2);
SRC(1,1)=SRC(0,3)= F2(t1,t2,t3);
SRC(2,0)=SRC(1,2)= F1(t2,t3);
SRC(2,1)=SRC(1,3)= F2(t2,t3,t4);
SRC(3,0)=SRC(2,2)= F1(t3,t4);
SRC(3,1)=SRC(2,3)= F2(t3,t4,t5);
SRC(3,2)= F1(t4,t5);
SRC(3,3)= F2(t4,t5,t6);
}
static void predict_4x4_hu( uint8_t *src )
{
PREDICT_4x4_LOAD_LEFT
SRC(0,0)= F1(l0,l1);
SRC(1,0)= F2(l0,l1,l2);
SRC(2,0)=SRC(0,1)= F1(l1,l2);
SRC(3,0)=SRC(1,1)= F2(l1,l2,l3);
SRC(2,1)=SRC(0,2)= F1(l2,l3);
SRC(3,1)=SRC(1,2)= F2(l2,l3,l3);
SRC(3,2)=SRC(1,3)=SRC(0,3)=
SRC(2,2)=SRC(2,3)=SRC(3,3)= l3;
}
/****************************************************************************
* 8x8 prediction for intra luma block
****************************************************************************/
#define PL(y) \
edge[14-y] = F2(SRC(-1,y-1), SRC(-1,y), SRC(-1,y+1));
#define PT(x) \
edge[16+x] = F2(SRC(x-1,-1), SRC(x,-1), SRC(x+1,-1));
void x264_predict_8x8_filter( uint8_t *src, uint8_t edge[33], int i_neighbor, int i_filters )
{
/* edge[7..14] = l7..l0
* edge[15] = lt
* edge[16..31] = t0 .. t15
* edge[32] = t15 */
int have_lt = i_neighbor & MB_TOPLEFT;
if( i_filters & MB_LEFT )
{
edge[15] = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2;
edge[14] = ((have_lt ? SRC(-1,-1) : SRC(-1,0))
+ 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2;
PL(1) PL(2) PL(3) PL(4) PL(5) PL(6)
edge[7] = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2;
}
if( i_filters & MB_TOP )
{
int have_tr = i_neighbor & MB_TOPRIGHT;
edge[16] = ((have_lt ? SRC(-1,-1) : SRC(0,-1))
+ 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2;
PT(1) PT(2) PT(3) PT(4) PT(5) PT(6)
edge[23] = ((have_tr ? SRC(8,-1) : SRC(7,-1))
+ 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2;
if( i_filters & MB_TOPRIGHT )
{
if( have_tr )
{
PT(8) PT(9) PT(10) PT(11) PT(12) PT(13) PT(14)
edge[31] =
edge[32] = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2;
}
else
{
*(uint64_t*)(edge+24) = SRC(7,-1) * 0x0101010101010101ULL;
edge[32] = SRC(7,-1);
}
}
}
}
#undef PL
#undef PT
#define PL(y) \
UNUSED const int l##y = edge[14-y];
#define PT(x) \
UNUSED const int t##x = edge[16+x];
#define PREDICT_8x8_LOAD_TOPLEFT \
const int lt = edge[15];
#define PREDICT_8x8_LOAD_LEFT \
PL(0) PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) PL(7)
#define PREDICT_8x8_LOAD_TOP \
PT(0) PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) PT(7)
#define PREDICT_8x8_LOAD_TOPRIGHT \
PT(8) PT(9) PT(10) PT(11) PT(12) PT(13) PT(14) PT(15)
#define PREDICT_8x8_DC(v) \
int y; \
for( y = 0; y < 8; y++ ) { \
((uint32_t*)src)[0] = \
((uint32_t*)src)[1] = v; \
src += FDEC_STRIDE; \
}
/* SIMD is much faster than C for all of these except HU and HD. */
static void predict_8x8_dc_128( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_DC(0x80808080);
}
static void predict_8x8_dc_left( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_LEFT
const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
PREDICT_8x8_DC(dc);
}
static void predict_8x8_dc_top( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_TOP
const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
PREDICT_8x8_DC(dc);
}
static void predict_8x8_dc( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_LEFT
PREDICT_8x8_LOAD_TOP
const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
+t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
PREDICT_8x8_DC(dc);
}
static void predict_8x8_h( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_LEFT
#define ROW(y) ((uint32_t*)(src+y*FDEC_STRIDE))[0] =\
((uint32_t*)(src+y*FDEC_STRIDE))[1] = 0x01010101U * l##y
ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
#undef ROW
}
static void predict_8x8_v( uint8_t *src, uint8_t edge[33] )
{
const uint64_t top = *(uint64_t*)(edge+16);
int y;
for( y = 0; y < 8; y++ )
*(uint64_t*)(src+y*FDEC_STRIDE) = top;
}
static void predict_8x8_ddl( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_TOP
PREDICT_8x8_LOAD_TOPRIGHT
SRC(0,0)= F2(t0,t1,t2);
SRC(0,1)=SRC(1,0)= F2(t1,t2,t3);
SRC(0,2)=SRC(1,1)=SRC(2,0)= F2(t2,t3,t4);
SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= F2(t3,t4,t5);
SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= F2(t4,t5,t6);
SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= F2(t5,t6,t7);
SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= F2(t6,t7,t8);
SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= F2(t7,t8,t9);
SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= F2(t8,t9,t10);
SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= F2(t9,t10,t11);
SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= F2(t10,t11,t12);
SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= F2(t11,t12,t13);
SRC(5,7)=SRC(6,6)=SRC(7,5)= F2(t12,t13,t14);
SRC(6,7)=SRC(7,6)= F2(t13,t14,t15);
SRC(7,7)= F2(t14,t15,t15);
}
static void predict_8x8_ddr( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_TOP
PREDICT_8x8_LOAD_LEFT
PREDICT_8x8_LOAD_TOPLEFT
SRC(0,7)= F2(l7,l6,l5);
SRC(0,6)=SRC(1,7)= F2(l6,l5,l4);
SRC(0,5)=SRC(1,6)=SRC(2,7)= F2(l5,l4,l3);
SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= F2(l4,l3,l2);
SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= F2(l3,l2,l1);
SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= F2(l2,l1,l0);
SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= F2(l1,l0,lt);
SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= F2(l0,lt,t0);
SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= F2(lt,t0,t1);
SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= F2(t0,t1,t2);
SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= F2(t1,t2,t3);
SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= F2(t2,t3,t4);
SRC(5,0)=SRC(6,1)=SRC(7,2)= F2(t3,t4,t5);
SRC(6,0)=SRC(7,1)= F2(t4,t5,t6);
SRC(7,0)= F2(t5,t6,t7);
}
static void predict_8x8_vr( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_TOP
PREDICT_8x8_LOAD_LEFT
PREDICT_8x8_LOAD_TOPLEFT
SRC(0,6)= F2(l5,l4,l3);
SRC(0,7)= F2(l6,l5,l4);
SRC(0,4)=SRC(1,6)= F2(l3,l2,l1);
SRC(0,5)=SRC(1,7)= F2(l4,l3,l2);
SRC(0,2)=SRC(1,4)=SRC(2,6)= F2(l1,l0,lt);
SRC(0,3)=SRC(1,5)=SRC(2,7)= F2(l2,l1,l0);
SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= F2(l0,lt,t0);
SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= F1(lt,t0);
SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= F2(lt,t0,t1);
SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= F1(t0,t1);
SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= F2(t0,t1,t2);
SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= F1(t1,t2);
SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= F2(t1,t2,t3);
SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= F1(t2,t3);
SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= F2(t2,t3,t4);
SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= F1(t3,t4);
SRC(5,1)=SRC(6,3)=SRC(7,5)= F2(t3,t4,t5);
SRC(5,0)=SRC(6,2)=SRC(7,4)= F1(t4,t5);
SRC(6,1)=SRC(7,3)= F2(t4,t5,t6);
SRC(6,0)=SRC(7,2)= F1(t5,t6);
SRC(7,1)= F2(t5,t6,t7);
SRC(7,0)= F1(t6,t7);
}
static void predict_8x8_hd( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_TOP
PREDICT_8x8_LOAD_LEFT
PREDICT_8x8_LOAD_TOPLEFT
int p1 = pack8to16(F1(l6,l7), F2(l5,l6,l7));
int p2 = pack8to16(F1(l5,l6), F2(l4,l5,l6));
int p3 = pack8to16(F1(l4,l5), F2(l3,l4,l5));
int p4 = pack8to16(F1(l3,l4), F2(l2,l3,l4));
int p5 = pack8to16(F1(l2,l3), F2(l1,l2,l3));
int p6 = pack8to16(F1(l1,l2), F2(l0,l1,l2));
int p7 = pack8to16(F1(l0,l1), F2(lt,l0,l1));
int p8 = pack8to16(F1(lt,l0), F2(l0,lt,t0));
int p9 = pack8to16(F2(t1,t0,lt), F2(t2,t1,t0));
int p10 = pack8to16(F2(t3,t2,t1), F2(t4,t3,t2));
int p11 = pack8to16(F2(t5,t4,t3), F2(t6,t5,t4));
SRC32(0,7)= pack16to32(p1,p2);
SRC32(0,6)= pack16to32(p2,p3);
SRC32(4,7)=SRC32(0,5)= pack16to32(p3,p4);
SRC32(4,6)=SRC32(0,4)= pack16to32(p4,p5);
SRC32(4,5)=SRC32(0,3)= pack16to32(p5,p6);
SRC32(4,4)=SRC32(0,2)= pack16to32(p6,p7);
SRC32(4,3)=SRC32(0,1)= pack16to32(p7,p8);
SRC32(4,2)=SRC32(0,0)= pack16to32(p8,p9);
SRC32(4,1)= pack16to32(p9,p10);
SRC32(4,0)= pack16to32(p10,p11);
}
static void predict_8x8_vl( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_TOP
PREDICT_8x8_LOAD_TOPRIGHT
SRC(0,0)= F1(t0,t1);
SRC(0,1)= F2(t0,t1,t2);
SRC(0,2)=SRC(1,0)= F1(t1,t2);
SRC(0,3)=SRC(1,1)= F2(t1,t2,t3);
SRC(0,4)=SRC(1,2)=SRC(2,0)= F1(t2,t3);
SRC(0,5)=SRC(1,3)=SRC(2,1)= F2(t2,t3,t4);
SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= F1(t3,t4);
SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= F2(t3,t4,t5);
SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= F1(t4,t5);
SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= F2(t4,t5,t6);
SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= F1(t5,t6);
SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= F2(t5,t6,t7);
SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= F1(t6,t7);
SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= F2(t6,t7,t8);
SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= F1(t7,t8);
SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= F2(t7,t8,t9);
SRC(5,6)=SRC(6,4)=SRC(7,2)= F1(t8,t9);
SRC(5,7)=SRC(6,5)=SRC(7,3)= F2(t8,t9,t10);
SRC(6,6)=SRC(7,4)= F1(t9,t10);
SRC(6,7)=SRC(7,5)= F2(t9,t10,t11);
SRC(7,6)= F1(t10,t11);
SRC(7,7)= F2(t10,t11,t12);
}
static void predict_8x8_hu( uint8_t *src, uint8_t edge[33] )
{
PREDICT_8x8_LOAD_LEFT
int p1 = pack8to16(F1(l0,l1), F2(l0,l1,l2));
int p2 = pack8to16(F1(l1,l2), F2(l1,l2,l3));
int p3 = pack8to16(F1(l2,l3), F2(l2,l3,l4));
int p4 = pack8to16(F1(l3,l4), F2(l3,l4,l5));
int p5 = pack8to16(F1(l4,l5), F2(l4,l5,l6));
int p6 = pack8to16(F1(l5,l6), F2(l5,l6,l7));
int p7 = pack8to16(F1(l6,l7), F2(l6,l7,l7));
int p8 = pack8to16(l7,l7);
SRC32(0,0)= pack16to32(p1,p2);
SRC32(0,1)= pack16to32(p2,p3);
SRC32(4,0)=SRC32(0,2)= pack16to32(p3,p4);
SRC32(4,1)=SRC32(0,3)= pack16to32(p4,p5);
SRC32(4,2)=SRC32(0,4)= pack16to32(p5,p6);
SRC32(4,3)=SRC32(0,5)= pack16to32(p6,p7);
SRC32(4,4)=SRC32(0,6)= pack16to32(p7,p8);
SRC32(4,5)=SRC32(4,6)= SRC32(0,7) = SRC32(4,7) = pack16to32(p8,p8);
}
/****************************************************************************
* Exported functions:
****************************************************************************/
void x264_predict_16x16_init( int cpu, x264_predict_t pf[7] )
{
pf[I_PRED_16x16_V ] = predict_16x16_v;
pf[I_PRED_16x16_H ] = predict_16x16_h;
pf[I_PRED_16x16_DC] = predict_16x16_dc;
pf[I_PRED_16x16_P ] = predict_16x16_p;
pf[I_PRED_16x16_DC_LEFT]= predict_16x16_dc_left;
pf[I_PRED_16x16_DC_TOP ]= predict_16x16_dc_top;
pf[I_PRED_16x16_DC_128 ]= predict_16x16_dc_128;
#ifdef HAVE_MMX
x264_predict_16x16_init_mmx( cpu, pf );
#endif
#ifdef ARCH_PPC
if( cpu&X264_CPU_ALTIVEC )
{
x264_predict_16x16_init_altivec( pf );
}
#endif
}
void x264_predict_8x8c_init( int cpu, x264_predict_t pf[7] )
{
pf[I_PRED_CHROMA_V ] = predict_8x8c_v;
pf[I_PRED_CHROMA_H ] = predict_8x8c_h;
pf[I_PRED_CHROMA_DC] = predict_8x8c_dc;
pf[I_PRED_CHROMA_P ] = predict_8x8c_p;
pf[I_PRED_CHROMA_DC_LEFT]= predict_8x8c_dc_left;
pf[I_PRED_CHROMA_DC_TOP ]= predict_8x8c_dc_top;
pf[I_PRED_CHROMA_DC_128 ]= predict_8x8c_dc_128;
#ifdef HAVE_MMX
x264_predict_8x8c_init_mmx( cpu, pf );
#endif
}
void x264_predict_8x8_init( int cpu, x264_predict8x8_t pf[12] )
{
pf[I_PRED_8x8_V] = predict_8x8_v;
pf[I_PRED_8x8_H] = predict_8x8_h;
pf[I_PRED_8x8_DC] = predict_8x8_dc;
pf[I_PRED_8x8_DDL] = predict_8x8_ddl;
pf[I_PRED_8x8_DDR] = predict_8x8_ddr;
pf[I_PRED_8x8_VR] = predict_8x8_vr;
pf[I_PRED_8x8_HD] = predict_8x8_hd;
pf[I_PRED_8x8_VL] = predict_8x8_vl;
pf[I_PRED_8x8_HU] = predict_8x8_hu;
pf[I_PRED_8x8_DC_LEFT]= predict_8x8_dc_left;
pf[I_PRED_8x8_DC_TOP] = predict_8x8_dc_top;
pf[I_PRED_8x8_DC_128] = predict_8x8_dc_128;
#ifdef HAVE_MMX
x264_predict_8x8_init_mmx( cpu, pf );
#endif
}
void x264_predict_4x4_init( int cpu, x264_predict_t pf[12] )
{
pf[I_PRED_4x4_V] = predict_4x4_v;
pf[I_PRED_4x4_H] = predict_4x4_h;
pf[I_PRED_4x4_DC] = predict_4x4_dc;
pf[I_PRED_4x4_DDL] = predict_4x4_ddl;
pf[I_PRED_4x4_DDR] = predict_4x4_ddr;
pf[I_PRED_4x4_VR] = predict_4x4_vr;
pf[I_PRED_4x4_HD] = predict_4x4_hd;
pf[I_PRED_4x4_VL] = predict_4x4_vl;
pf[I_PRED_4x4_HU] = predict_4x4_hu;
pf[I_PRED_4x4_DC_LEFT]= predict_4x4_dc_left;
pf[I_PRED_4x4_DC_TOP] = predict_4x4_dc_top;
pf[I_PRED_4x4_DC_128] = predict_4x4_dc_128;
#ifdef HAVE_MMX
x264_predict_4x4_init_mmx( cpu, pf );
#endif
}