blob: ee7b9485c5750773598b472bc04af4cdd65b82a8 [file] [log] [blame]
/*****************************************************************************
* quant.c: h264 encoder library
*****************************************************************************
* Copyright (C) 2005-2008 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Christian Heine <sennindemokrit@gmx.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
#include "common.h"
#ifdef HAVE_MMX
#include "x86/quant.h"
#endif
#ifdef ARCH_PPC
# include "ppc/quant.h"
#endif
#define QUANT_ONE( coef, mf, f ) \
{ \
if( (coef) > 0 ) \
(coef) = (f + (coef)) * (mf) >> 16; \
else \
(coef) = - ((f - (coef)) * (mf) >> 16); \
}
static void quant_8x8( int16_t dct[8][8], uint16_t mf[64], uint16_t bias[64] )
{
int i;
for( i = 0; i < 64; i++ )
QUANT_ONE( dct[0][i], mf[i], bias[i] );
}
static void quant_4x4( int16_t dct[4][4], uint16_t mf[16], uint16_t bias[16] )
{
int i;
for( i = 0; i < 16; i++ )
QUANT_ONE( dct[0][i], mf[i], bias[i] );
}
static void quant_4x4_dc( int16_t dct[4][4], int mf, int bias )
{
int i;
for( i = 0; i < 16; i++ )
QUANT_ONE( dct[0][i], mf, bias );
}
static void quant_2x2_dc( int16_t dct[2][2], int mf, int bias )
{
QUANT_ONE( dct[0][0], mf, bias );
QUANT_ONE( dct[0][1], mf, bias );
QUANT_ONE( dct[0][2], mf, bias );
QUANT_ONE( dct[0][3], mf, bias );
}
#define DEQUANT_SHL( x ) \
dct[y][x] = ( dct[y][x] * dequant_mf[i_mf][y][x] ) << i_qbits
#define DEQUANT_SHR( x ) \
dct[y][x] = ( dct[y][x] * dequant_mf[i_mf][y][x] + f ) >> (-i_qbits)
static void dequant_4x4( int16_t dct[4][4], int dequant_mf[6][4][4], int i_qp )
{
const int i_mf = i_qp%6;
const int i_qbits = i_qp/6 - 4;
int y;
if( i_qbits >= 0 )
{
for( y = 0; y < 4; y++ )
{
DEQUANT_SHL( 0 );
DEQUANT_SHL( 1 );
DEQUANT_SHL( 2 );
DEQUANT_SHL( 3 );
}
}
else
{
const int f = 1 << (-i_qbits-1);
for( y = 0; y < 4; y++ )
{
DEQUANT_SHR( 0 );
DEQUANT_SHR( 1 );
DEQUANT_SHR( 2 );
DEQUANT_SHR( 3 );
}
}
}
static void dequant_8x8( int16_t dct[8][8], int dequant_mf[6][8][8], int i_qp )
{
const int i_mf = i_qp%6;
const int i_qbits = i_qp/6 - 6;
int y;
if( i_qbits >= 0 )
{
for( y = 0; y < 8; y++ )
{
DEQUANT_SHL( 0 );
DEQUANT_SHL( 1 );
DEQUANT_SHL( 2 );
DEQUANT_SHL( 3 );
DEQUANT_SHL( 4 );
DEQUANT_SHL( 5 );
DEQUANT_SHL( 6 );
DEQUANT_SHL( 7 );
}
}
else
{
const int f = 1 << (-i_qbits-1);
for( y = 0; y < 8; y++ )
{
DEQUANT_SHR( 0 );
DEQUANT_SHR( 1 );
DEQUANT_SHR( 2 );
DEQUANT_SHR( 3 );
DEQUANT_SHR( 4 );
DEQUANT_SHR( 5 );
DEQUANT_SHR( 6 );
DEQUANT_SHR( 7 );
}
}
}
static void dequant_4x4_dc( int16_t dct[4][4], int dequant_mf[6][4][4], int i_qp )
{
const int i_qbits = i_qp/6 - 6;
int y;
if( i_qbits >= 0 )
{
const int i_dmf = dequant_mf[i_qp%6][0][0] << i_qbits;
for( y = 0; y < 4; y++ )
{
dct[y][0] *= i_dmf;
dct[y][1] *= i_dmf;
dct[y][2] *= i_dmf;
dct[y][3] *= i_dmf;
}
}
else
{
const int i_dmf = dequant_mf[i_qp%6][0][0];
const int f = 1 << (-i_qbits-1);
for( y = 0; y < 4; y++ )
{
dct[y][0] = ( dct[y][0] * i_dmf + f ) >> (-i_qbits);
dct[y][1] = ( dct[y][1] * i_dmf + f ) >> (-i_qbits);
dct[y][2] = ( dct[y][2] * i_dmf + f ) >> (-i_qbits);
dct[y][3] = ( dct[y][3] * i_dmf + f ) >> (-i_qbits);
}
}
}
static void x264_denoise_dct( int16_t *dct, uint32_t *sum, uint16_t *offset, int size )
{
int i;
for( i=1; i<size; i++ )
{
int level = dct[i];
int sign = level>>15;
level = (level+sign)^sign;
sum[i] += level;
level -= offset[i];
dct[i] = level<0 ? 0 : (level^sign)-sign;
}
}
/* (ref: JVT-B118)
* x264_mb_decimate_score: given dct coeffs it returns a score to see if we could empty this dct coeffs
* to 0 (low score means set it to null)
* Used in inter macroblock (luma and chroma)
* luma: for a 8x8 block: if score < 4 -> null
* for the complete mb: if score < 6 -> null
* chroma: for the complete mb: if score < 7 -> null
*/
const uint8_t x264_decimate_table4[16] = {
3,2,2,1,1,1,0,0,0,0,0,0,0,0,0,0 };
const uint8_t x264_decimate_table8[64] = {
3,3,3,3,2,2,2,2,2,2,2,2,1,1,1,1,
1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
static int ALWAYS_INLINE x264_decimate_score_internal( int16_t *dct, int i_max )
{
const uint8_t *ds_table = (i_max == 64) ? x264_decimate_table8 : x264_decimate_table4;
int i_score = 0;
int idx = i_max - 1;
/* Yes, dct[idx-1] is guaranteed to be 32-bit aligned. idx>=0 instead of 1 works correctly for the same reason */
while( idx >= 0 && *(uint32_t*)&dct[idx-1] == 0 )
idx -= 2;
if( idx >= 0 && dct[idx] == 0 )
idx--;
while( idx >= 0 )
{
int i_run;
if( (unsigned)(dct[idx--] + 1) > 2 )
return 9;
i_run = 0;
while( idx >= 0 && dct[idx] == 0 )
{
idx--;
i_run++;
}
i_score += ds_table[i_run];
}
return i_score;
}
static int x264_decimate_score15( int16_t *dct )
{
return x264_decimate_score_internal( dct+1, 15 );
}
static int x264_decimate_score16( int16_t *dct )
{
return x264_decimate_score_internal( dct, 16 );
}
static int x264_decimate_score64( int16_t *dct )
{
return x264_decimate_score_internal( dct, 64 );
}
static int ALWAYS_INLINE x264_coeff_last_internal( int16_t *l, int i_count )
{
int i_last;
for( i_last = i_count-1; i_last >= 3; i_last -= 4 )
if( *(uint64_t*)(l+i_last-3) )
break;
while( i_last >= 0 && l[i_last] == 0 )
i_last--;
return i_last;
}
static int x264_coeff_last4( int16_t *l )
{
return x264_coeff_last_internal( l, 4 );
}
static int x264_coeff_last15( int16_t *l )
{
return x264_coeff_last_internal( l, 15 );
}
static int x264_coeff_last16( int16_t *l )
{
return x264_coeff_last_internal( l, 16 );
}
static int x264_coeff_last64( int16_t *l )
{
return x264_coeff_last_internal( l, 64 );
}
void x264_quant_init( x264_t *h, int cpu, x264_quant_function_t *pf )
{
pf->quant_8x8 = quant_8x8;
pf->quant_4x4 = quant_4x4;
pf->quant_4x4_dc = quant_4x4_dc;
pf->quant_2x2_dc = quant_2x2_dc;
pf->dequant_4x4 = dequant_4x4;
pf->dequant_4x4_dc = dequant_4x4_dc;
pf->dequant_8x8 = dequant_8x8;
pf->denoise_dct = x264_denoise_dct;
pf->decimate_score15 = x264_decimate_score15;
pf->decimate_score16 = x264_decimate_score16;
pf->decimate_score64 = x264_decimate_score64;
pf->coeff_last[DCT_CHROMA_DC] = x264_coeff_last4;
pf->coeff_last[ DCT_LUMA_AC] = x264_coeff_last15;
pf->coeff_last[ DCT_LUMA_4x4] = x264_coeff_last16;
pf->coeff_last[ DCT_LUMA_8x8] = x264_coeff_last64;
#ifdef HAVE_MMX
if( cpu&X264_CPU_MMX )
{
#ifdef ARCH_X86
pf->quant_4x4 = x264_quant_4x4_mmx;
pf->quant_8x8 = x264_quant_8x8_mmx;
pf->dequant_4x4 = x264_dequant_4x4_mmx;
pf->dequant_4x4_dc = x264_dequant_4x4dc_mmxext;
pf->dequant_8x8 = x264_dequant_8x8_mmx;
if( h->param.i_cqm_preset == X264_CQM_FLAT )
{
pf->dequant_4x4 = x264_dequant_4x4_flat16_mmx;
pf->dequant_8x8 = x264_dequant_8x8_flat16_mmx;
}
pf->denoise_dct = x264_denoise_dct_mmx;
#endif
}
if( cpu&X264_CPU_MMXEXT )
{
pf->quant_2x2_dc = x264_quant_2x2_dc_mmxext;
#ifdef ARCH_X86
pf->quant_4x4_dc = x264_quant_4x4_dc_mmxext;
pf->decimate_score15 = x264_decimate_score15_mmxext;
pf->decimate_score16 = x264_decimate_score16_mmxext;
pf->decimate_score64 = x264_decimate_score64_mmxext;
pf->coeff_last[ DCT_LUMA_AC] = x264_coeff_last15_mmxext;
pf->coeff_last[ DCT_LUMA_4x4] = x264_coeff_last16_mmxext;
pf->coeff_last[ DCT_LUMA_8x8] = x264_coeff_last64_mmxext;
#endif
pf->coeff_last[DCT_CHROMA_DC] = x264_coeff_last4_mmxext;
}
if( cpu&X264_CPU_SSE2 )
{
pf->quant_4x4_dc = x264_quant_4x4_dc_sse2;
pf->quant_4x4 = x264_quant_4x4_sse2;
pf->quant_8x8 = x264_quant_8x8_sse2;
pf->dequant_4x4 = x264_dequant_4x4_sse2;
pf->dequant_4x4_dc = x264_dequant_4x4dc_sse2;
pf->dequant_8x8 = x264_dequant_8x8_sse2;
if( h->param.i_cqm_preset == X264_CQM_FLAT )
{
pf->dequant_4x4 = x264_dequant_4x4_flat16_sse2;
pf->dequant_8x8 = x264_dequant_8x8_flat16_sse2;
}
pf->denoise_dct = x264_denoise_dct_sse2;
pf->decimate_score15 = x264_decimate_score15_sse2;
pf->decimate_score16 = x264_decimate_score16_sse2;
pf->decimate_score64 = x264_decimate_score64_sse2;
pf->coeff_last[ DCT_LUMA_AC] = x264_coeff_last15_sse2;
pf->coeff_last[DCT_LUMA_4x4] = x264_coeff_last16_sse2;
pf->coeff_last[DCT_LUMA_8x8] = x264_coeff_last64_sse2;
}
if( cpu&X264_CPU_SSSE3 )
{
pf->quant_2x2_dc = x264_quant_2x2_dc_ssse3;
pf->quant_4x4_dc = x264_quant_4x4_dc_ssse3;
pf->quant_4x4 = x264_quant_4x4_ssse3;
pf->quant_8x8 = x264_quant_8x8_ssse3;
pf->denoise_dct = x264_denoise_dct_ssse3;
pf->decimate_score15 = x264_decimate_score15_ssse3;
pf->decimate_score16 = x264_decimate_score16_ssse3;
pf->decimate_score64 = x264_decimate_score64_ssse3;
}
#endif // HAVE_MMX
#ifdef ARCH_PPC
if( cpu&X264_CPU_ALTIVEC ) {
pf->quant_2x2_dc = x264_quant_2x2_dc_altivec;
pf->quant_4x4_dc = x264_quant_4x4_dc_altivec;
pf->quant_4x4 = x264_quant_4x4_altivec;
pf->quant_8x8 = x264_quant_8x8_altivec;
pf->dequant_4x4 = x264_dequant_4x4_altivec;
pf->dequant_8x8 = x264_dequant_8x8_altivec;
}
#endif
pf->coeff_last[ DCT_LUMA_DC] = pf->coeff_last[DCT_LUMA_4x4];
pf->coeff_last[DCT_CHROMA_AC] = pf->coeff_last[ DCT_LUMA_AC];
}