blob: b715384f178e9fed856fac87d50e7a5c45d46b28 [file] [log] [blame]
/*****************************************************************************
* cavlc.c: h264 encoder library
*****************************************************************************
* Copyright (C) 2003-2008 x264 project
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
* Jason Garrett-Glaser <darkshikari@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
#include "common/common.h"
#include "macroblock.h"
#ifndef RDO_SKIP_BS
#define RDO_SKIP_BS 0
#endif
static const uint8_t intra4x4_cbp_to_golomb[48]=
{
3, 29, 30, 17, 31, 18, 37, 8, 32, 38, 19, 9, 20, 10, 11, 2,
16, 33, 34, 21, 35, 22, 39, 4, 36, 40, 23, 5, 24, 6, 7, 1,
41, 42, 43, 25, 44, 26, 46, 12, 45, 47, 27, 13, 28, 14, 15, 0
};
static const uint8_t inter_cbp_to_golomb[48]=
{
0, 2, 3, 7, 4, 8, 17, 13, 5, 18, 9, 14, 10, 15, 16, 11,
1, 32, 33, 36, 34, 37, 44, 40, 35, 45, 38, 41, 39, 42, 43, 19,
6, 24, 25, 20, 26, 21, 46, 28, 27, 47, 22, 29, 23, 30, 31, 12
};
static const uint8_t mb_type_b_to_golomb[3][9]=
{
{ 4, 8, 12, 10, 6, 14, 16, 18, 20 }, /* D_16x8 */
{ 5, 9, 13, 11, 7, 15, 17, 19, 21 }, /* D_8x16 */
{ 1, -1, -1, -1, 2, -1, -1, -1, 3 } /* D_16x16 */
};
static const uint8_t sub_mb_type_p_to_golomb[4]=
{
3, 1, 2, 0
};
static const uint8_t sub_mb_type_b_to_golomb[13]=
{
10, 4, 5, 1, 11, 6, 7, 2, 12, 8, 9, 3, 0
};
static inline void bs_write_vlc( bs_t *s, vlc_t v )
{
bs_write( s, v.i_size, v.i_bits );
}
/****************************************************************************
* block_residual_write_cavlc:
****************************************************************************/
static void block_residual_write_cavlc( x264_t *h, bs_t *s, int i_ctxBlockCat, int i_idx, int16_t *l, int i_count )
{
static const int ct_index[17] = {0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3};
int level[16], run[16];
int i_total, i_trailing;
int i_total_zero;
int i_last;
unsigned int i_sign;
int i;
int idx = 0;
int i_suffix_length;
/* x264_mb_predict_non_zero_code return 0 <-> (16+16+1)>>1 = 16 */
int nC = i_idx >= 25 ? 4 : ct_index[x264_mb_predict_non_zero_code( h, i_idx == 24 ? 0 : i_idx )];
if( !h->mb.cache.non_zero_count[x264_scan8[i_idx]] )
{
bs_write_vlc( s, x264_coeff_token[nC][0] );
return;
}
i_last = h->quantf.coeff_last[i_ctxBlockCat](l);
i_sign = 0;
i_total = 0;
i_trailing = 0;
i_total_zero = i_last + 1;
/* level and run and total */
while( i_last >= 0 )
{
int r = 0;
level[idx] = l[i_last];
while( --i_last >= 0 && l[i_last] == 0 )
r++;
run[idx++] = r;
}
i_total = idx;
i_total_zero -= idx;
i_trailing = X264_MIN(3, idx);
for( idx = 0; idx < i_trailing; idx++ )
{
if( (unsigned)(level[idx]+1) > 2 )
{
i_trailing = idx;
break;
}
i_sign <<= 1;
i_sign |= level[idx] < 0;
}
/* total/trailing */
bs_write_vlc( s, x264_coeff_token[nC][i_total*4+i_trailing] );
i_suffix_length = i_total > 10 && i_trailing < 3 ? 1 : 0;
if( i_trailing > 0 )
bs_write( s, i_trailing, i_sign );
for( i = i_trailing; i < i_total; i++ )
{
int mask = level[i] >> 15;
int abs_level = (level[i]^mask)-mask;
int i_level_code = abs_level*2-mask-2;
if( i == i_trailing && i_trailing < 3 )
i_level_code -= 2; /* as level[i] can't be 1 for the first one if i_trailing < 3 */
if( ( i_level_code >> i_suffix_length ) < 14 )
bs_write( s, (i_level_code >> i_suffix_length) + 1 + i_suffix_length,
(1<<i_suffix_length) + (i_level_code & ((1<<i_suffix_length)-1)) );
else if( i_suffix_length == 0 && i_level_code < 30 )
bs_write( s, 19, (1<<4) + (i_level_code - 14) );
else if( i_suffix_length > 0 && ( i_level_code >> i_suffix_length ) == 14 )
bs_write( s, 15 + i_suffix_length,
(1<<i_suffix_length) + (i_level_code & ((1<<i_suffix_length)-1)) );
else
{
int i_level_prefix = 15;
i_level_code -= 15 << i_suffix_length;
if( i_suffix_length == 0 )
i_level_code -= 15;
/* If the prefix size exceeds 15, High Profile is required. */
if( i_level_code >= 1<<12 )
{
if( h->sps->i_profile_idc >= PROFILE_HIGH )
{
while( i_level_code > 1<<(i_level_prefix-3) )
{
i_level_code -= 1<<(i_level_prefix-3);
i_level_prefix++;
}
}
else
{
#if RDO_SKIP_BS
/* Weight highly against overflows. */
s->i_bits_encoded += 1000000;
#else
x264_log(h, X264_LOG_WARNING, "OVERFLOW levelcode=%d is only allowed in High Profile", i_level_code );
/* clip level, preserving sign */
i_level_code = (1<<12) - 2 + (i_level_code & 1);
#endif
}
}
bs_write( s, i_level_prefix + 1, 1 );
bs_write( s, i_level_prefix - 3, i_level_code & ((1<<(i_level_prefix-3))-1) );
}
if( i_suffix_length == 0 )
i_suffix_length++;
if( abs_level > (3 << (i_suffix_length-1)) && i_suffix_length < 6 )
i_suffix_length++;
}
if( i_total < i_count )
{
if( i_idx >= 25 )
bs_write_vlc( s, x264_total_zeros_dc[i_total-1][i_total_zero] );
else
bs_write_vlc( s, x264_total_zeros[i_total-1][i_total_zero] );
}
for( i = 0; i < i_total-1 && i_total_zero > 0; i++ )
{
int i_zl = X264_MIN( i_total_zero - 1, 6 );
bs_write_vlc( s, x264_run_before[i_zl][run[i]] );
i_total_zero -= run[i];
}
}
static void cavlc_qp_delta( x264_t *h, bs_t *s )
{
int i_dqp = h->mb.i_qp - h->mb.i_last_qp;
/* Avoid writing a delta quant if we have an empty i16x16 block, e.g. in a completely flat background area */
if( h->mb.i_type == I_16x16 && !(h->mb.i_cbp_luma | h->mb.i_cbp_chroma)
&& !h->mb.cache.non_zero_count[x264_scan8[24]] )
{
#if !RDO_SKIP_BS
h->mb.i_qp = h->mb.i_last_qp;
#endif
i_dqp = 0;
}
if( i_dqp )
{
if( i_dqp < -26 )
i_dqp += 52;
else if( i_dqp > 25 )
i_dqp -= 52;
}
bs_write_se( s, i_dqp );
}
static void cavlc_mb_mvd( x264_t *h, bs_t *s, int i_list, int idx, int width )
{
DECLARE_ALIGNED_4( int16_t mvp[2] );
x264_mb_predict_mv( h, i_list, idx, width, mvp );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[idx]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[idx]][1] - mvp[1] );
}
static void cavlc_mb8x8_mvd( x264_t *h, bs_t *s, int i_list, int i )
{
if( !x264_mb_partition_listX_table[i_list][ h->mb.i_sub_partition[i] ] )
return;
switch( h->mb.i_sub_partition[i] )
{
case D_L0_8x8:
case D_L1_8x8:
case D_BI_8x8:
cavlc_mb_mvd( h, s, i_list, 4*i, 2 );
break;
case D_L0_8x4:
case D_L1_8x4:
case D_BI_8x4:
cavlc_mb_mvd( h, s, i_list, 4*i+0, 2 );
cavlc_mb_mvd( h, s, i_list, 4*i+2, 2 );
break;
case D_L0_4x8:
case D_L1_4x8:
case D_BI_4x8:
cavlc_mb_mvd( h, s, i_list, 4*i+0, 1 );
cavlc_mb_mvd( h, s, i_list, 4*i+1, 1 );
break;
case D_L0_4x4:
case D_L1_4x4:
case D_BI_4x4:
cavlc_mb_mvd( h, s, i_list, 4*i+0, 1 );
cavlc_mb_mvd( h, s, i_list, 4*i+1, 1 );
cavlc_mb_mvd( h, s, i_list, 4*i+2, 1 );
cavlc_mb_mvd( h, s, i_list, 4*i+3, 1 );
break;
}
}
static inline void x264_macroblock_luma_write_cavlc( x264_t *h, bs_t *s, int i8start, int i8end )
{
int i8, i4;
if( h->mb.b_transform_8x8 )
{
/* shuffle 8x8 dct coeffs into 4x4 lists */
for( i8 = i8start; i8 <= i8end; i8++ )
if( h->mb.i_cbp_luma & (1 << i8) )
h->zigzagf.interleave_8x8_cavlc( h->dct.luma4x4[i8*4], h->dct.luma8x8[i8] );
}
for( i8 = i8start; i8 <= i8end; i8++ )
if( h->mb.i_cbp_luma & (1 << i8) )
for( i4 = 0; i4 < 4; i4++ )
{
h->mb.cache.non_zero_count[x264_scan8[i4+i8*4]] = array_non_zero_count( h->dct.luma4x4[i4+i8*4] );
block_residual_write_cavlc( h, s, DCT_LUMA_4x4, i4+i8*4, h->dct.luma4x4[i4+i8*4], 16 );
}
}
/*****************************************************************************
* x264_macroblock_write:
*****************************************************************************/
void x264_macroblock_write_cavlc( x264_t *h, bs_t *s )
{
const int i_mb_type = h->mb.i_type;
int i_mb_i_offset;
int i;
#if !RDO_SKIP_BS
const int i_mb_pos_start = bs_pos( s );
int i_mb_pos_tex;
#endif
switch( h->sh.i_type )
{
case SLICE_TYPE_I:
i_mb_i_offset = 0;
break;
case SLICE_TYPE_P:
i_mb_i_offset = 5;
break;
case SLICE_TYPE_B:
i_mb_i_offset = 23;
break;
default:
x264_log(h, X264_LOG_ERROR, "internal error or slice unsupported\n" );
return;
}
if( h->sh.b_mbaff
&& (!(h->mb.i_mb_y & 1) || IS_SKIP(h->mb.type[h->mb.i_mb_xy - h->mb.i_mb_stride])) )
{
bs_write1( s, h->mb.b_interlaced );
}
#if !RDO_SKIP_BS
if( i_mb_type == I_PCM)
{
bs_write_ue( s, i_mb_i_offset + 25 );
i_mb_pos_tex = bs_pos( s );
h->stat.frame.i_mv_bits += i_mb_pos_tex - i_mb_pos_start;
bs_align_0( s );
memcpy( s->p, h->mb.pic.p_fenc[0], 256 );
s->p += 256;
for( i = 0; i < 8; i++ )
memcpy( s->p + i*8, h->mb.pic.p_fenc[1] + i*FENC_STRIDE, 8 );
s->p += 64;
for( i = 0; i < 8; i++ )
memcpy( s->p + i*8, h->mb.pic.p_fenc[2] + i*FENC_STRIDE, 8 );
s->p += 64;
/* if PCM is chosen, we need to store reconstructed frame data */
h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE, 16 );
h->mc.copy[PIXEL_8x8] ( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc[1], FENC_STRIDE, 8 );
h->mc.copy[PIXEL_8x8] ( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc[2], FENC_STRIDE, 8 );
h->stat.frame.i_tex_bits += bs_pos(s) - i_mb_pos_tex;
return;
}
#endif
/* Write:
- type
- prediction
- mv */
if( i_mb_type == I_4x4 || i_mb_type == I_8x8 )
{
int di = i_mb_type == I_8x8 ? 4 : 1;
bs_write_ue( s, i_mb_i_offset + 0 );
if( h->pps->b_transform_8x8_mode )
bs_write1( s, h->mb.b_transform_8x8 );
/* Prediction: Luma */
for( i = 0; i < 16; i += di )
{
int i_pred = x264_mb_predict_intra4x4_mode( h, i );
int i_mode = x264_mb_pred_mode4x4_fix( h->mb.cache.intra4x4_pred_mode[x264_scan8[i]] );
if( i_pred == i_mode )
bs_write1( s, 1 ); /* b_prev_intra4x4_pred_mode */
else
bs_write( s, 4, i_mode - (i_mode > i_pred) );
}
bs_write_ue( s, x264_mb_pred_mode8x8c_fix[ h->mb.i_chroma_pred_mode ] );
}
else if( i_mb_type == I_16x16 )
{
bs_write_ue( s, i_mb_i_offset + 1 + x264_mb_pred_mode16x16_fix[h->mb.i_intra16x16_pred_mode] +
h->mb.i_cbp_chroma * 4 + ( h->mb.i_cbp_luma == 0 ? 0 : 12 ) );
bs_write_ue( s, x264_mb_pred_mode8x8c_fix[ h->mb.i_chroma_pred_mode ] );
}
else if( i_mb_type == P_L0 )
{
DECLARE_ALIGNED_4( int16_t mvp[2] );
if( h->mb.i_partition == D_16x16 )
{
bs_write_ue( s, 0 );
if( h->mb.pic.i_fref[0] > 1 )
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[0]] );
x264_mb_predict_mv( h, 0, 0, 4, mvp );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[0]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[0]][1] - mvp[1] );
}
else if( h->mb.i_partition == D_16x8 )
{
bs_write_ue( s, 1 );
if( h->mb.pic.i_fref[0] > 1 )
{
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[0]] );
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[8]] );
}
x264_mb_predict_mv( h, 0, 0, 4, mvp );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[0]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[0]][1] - mvp[1] );
x264_mb_predict_mv( h, 0, 8, 4, mvp );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[8]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[8]][1] - mvp[1] );
}
else if( h->mb.i_partition == D_8x16 )
{
bs_write_ue( s, 2 );
if( h->mb.pic.i_fref[0] > 1 )
{
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[0]] );
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[4]] );
}
x264_mb_predict_mv( h, 0, 0, 2, mvp );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[0]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[0]][1] - mvp[1] );
x264_mb_predict_mv( h, 0, 4, 2, mvp );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[4]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[0][x264_scan8[4]][1] - mvp[1] );
}
}
else if( i_mb_type == P_8x8 )
{
int b_sub_ref0;
if( (h->mb.cache.ref[0][x264_scan8[0]] | h->mb.cache.ref[0][x264_scan8[ 4]] |
h->mb.cache.ref[0][x264_scan8[8]] | h->mb.cache.ref[0][x264_scan8[12]]) == 0 )
{
bs_write_ue( s, 4 );
b_sub_ref0 = 0;
}
else
{
bs_write_ue( s, 3 );
b_sub_ref0 = 1;
}
/* sub mb type */
if( h->param.analyse.inter & X264_ANALYSE_PSUB8x8 )
for( i = 0; i < 4; i++ )
bs_write_ue( s, sub_mb_type_p_to_golomb[ h->mb.i_sub_partition[i] ] );
else
bs_write( s, 4, 0xf );
/* ref0 */
if( h->mb.pic.i_fref[0] > 1 && b_sub_ref0 )
{
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[0]] );
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[4]] );
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[8]] );
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[12]] );
}
for( i = 0; i < 4; i++ )
cavlc_mb8x8_mvd( h, s, 0, i );
}
else if( i_mb_type == B_8x8 )
{
bs_write_ue( s, 22 );
/* sub mb type */
for( i = 0; i < 4; i++ )
bs_write_ue( s, sub_mb_type_b_to_golomb[ h->mb.i_sub_partition[i] ] );
/* ref */
for( i = 0; i < 4; i++ )
if( x264_mb_partition_listX_table[0][ h->mb.i_sub_partition[i] ] )
bs_write_te( s, h->mb.pic.i_fref[0] - 1, h->mb.cache.ref[0][x264_scan8[i*4]] );
for( i = 0; i < 4; i++ )
if( x264_mb_partition_listX_table[1][ h->mb.i_sub_partition[i] ] )
bs_write_te( s, h->mb.pic.i_fref[1] - 1, h->mb.cache.ref[1][x264_scan8[i*4]] );
/* mvd */
for( i = 0; i < 4; i++ )
cavlc_mb8x8_mvd( h, s, 0, i );
for( i = 0; i < 4; i++ )
cavlc_mb8x8_mvd( h, s, 1, i );
}
else if( i_mb_type != B_DIRECT )
{
/* All B mode */
/* Motion Vector */
int i_list;
DECLARE_ALIGNED_4( int16_t mvp[2] );
int b_list[2][2];
/* init ref list utilisations */
for( i = 0; i < 2; i++ )
{
b_list[0][i] = x264_mb_type_list0_table[i_mb_type][i];
b_list[1][i] = x264_mb_type_list1_table[i_mb_type][i];
}
bs_write_ue( s, mb_type_b_to_golomb[ h->mb.i_partition - D_16x8 ][ i_mb_type - B_L0_L0 ] );
for( i_list = 0; i_list < 2; i_list++ )
{
const int i_ref_max = (i_list == 0 ? h->mb.pic.i_fref[0] : h->mb.pic.i_fref[1]) - 1;
if( i_ref_max )
switch( h->mb.i_partition )
{
case D_16x16:
if( b_list[i_list][0] ) bs_write_te( s, i_ref_max, h->mb.cache.ref[i_list][x264_scan8[0]] );
break;
case D_16x8:
if( b_list[i_list][0] ) bs_write_te( s, i_ref_max, h->mb.cache.ref[i_list][x264_scan8[0]] );
if( b_list[i_list][1] ) bs_write_te( s, i_ref_max, h->mb.cache.ref[i_list][x264_scan8[8]] );
break;
case D_8x16:
if( b_list[i_list][0] ) bs_write_te( s, i_ref_max, h->mb.cache.ref[i_list][x264_scan8[0]] );
if( b_list[i_list][1] ) bs_write_te( s, i_ref_max, h->mb.cache.ref[i_list][x264_scan8[4]] );
break;
}
}
for( i_list = 0; i_list < 2; i_list++ )
{
switch( h->mb.i_partition )
{
case D_16x16:
if( b_list[i_list][0] )
{
x264_mb_predict_mv( h, i_list, 0, 4, mvp );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[0]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[0]][1] - mvp[1] );
}
break;
case D_16x8:
if( b_list[i_list][0] )
{
x264_mb_predict_mv( h, i_list, 0, 4, mvp );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[0]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[0]][1] - mvp[1] );
}
if( b_list[i_list][1] )
{
x264_mb_predict_mv( h, i_list, 8, 4, mvp );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[8]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[8]][1] - mvp[1] );
}
break;
case D_8x16:
if( b_list[i_list][0] )
{
x264_mb_predict_mv( h, i_list, 0, 2, mvp );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[0]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[0]][1] - mvp[1] );
}
if( b_list[i_list][1] )
{
x264_mb_predict_mv( h, i_list, 4, 2, mvp );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[4]][0] - mvp[0] );
bs_write_se( s, h->mb.cache.mv[i_list][x264_scan8[4]][1] - mvp[1] );
}
break;
}
}
}
else if( i_mb_type == B_DIRECT )
bs_write_ue( s, 0 );
else
{
x264_log(h, X264_LOG_ERROR, "invalid/unhandled mb_type\n" );
return;
}
#if !RDO_SKIP_BS
i_mb_pos_tex = bs_pos( s );
h->stat.frame.i_mv_bits += i_mb_pos_tex - i_mb_pos_start;
#endif
/* Coded block patern */
if( i_mb_type == I_4x4 || i_mb_type == I_8x8 )
bs_write_ue( s, intra4x4_cbp_to_golomb[( h->mb.i_cbp_chroma << 4 )|h->mb.i_cbp_luma] );
else if( i_mb_type != I_16x16 )
bs_write_ue( s, inter_cbp_to_golomb[( h->mb.i_cbp_chroma << 4 )|h->mb.i_cbp_luma] );
/* transform size 8x8 flag */
if( x264_mb_transform_8x8_allowed( h ) && h->mb.i_cbp_luma )
bs_write1( s, h->mb.b_transform_8x8 );
/* write residual */
if( i_mb_type == I_16x16 )
{
cavlc_qp_delta( h, s );
/* DC Luma */
block_residual_write_cavlc( h, s, DCT_LUMA_DC, 24 , h->dct.luma16x16_dc, 16 );
/* AC Luma */
if( h->mb.i_cbp_luma )
for( i = 0; i < 16; i++ )
{
h->mb.cache.non_zero_count[x264_scan8[i]] = array_non_zero_count( h->dct.luma4x4[i] );
block_residual_write_cavlc( h, s, DCT_LUMA_AC, i, h->dct.luma4x4[i]+1, 15 );
}
}
else if( h->mb.i_cbp_luma | h->mb.i_cbp_chroma )
{
cavlc_qp_delta( h, s );
x264_macroblock_luma_write_cavlc( h, s, 0, 3 );
}
if( h->mb.i_cbp_chroma )
{
/* Chroma DC residual present */
block_residual_write_cavlc( h, s, DCT_CHROMA_DC, 25, h->dct.chroma_dc[0], 4 );
block_residual_write_cavlc( h, s, DCT_CHROMA_DC, 26, h->dct.chroma_dc[1], 4 );
if( h->mb.i_cbp_chroma&0x02 ) /* Chroma AC residual present */
for( i = 16; i < 24; i++ )
{
h->mb.cache.non_zero_count[x264_scan8[i]] = array_non_zero_count( h->dct.luma4x4[i] );
block_residual_write_cavlc( h, s, DCT_CHROMA_AC, i, h->dct.luma4x4[i]+1, 15 );
}
}
#if !RDO_SKIP_BS
h->stat.frame.i_tex_bits += bs_pos(s) - i_mb_pos_tex;
#endif
}
#if RDO_SKIP_BS
/*****************************************************************************
* RD only; doesn't generate a valid bitstream
* doesn't write cbp or chroma dc (I don't know how much this matters)
* doesn't write ref or subpartition (never varies between calls, so no point in doing so)
* works on all partition sizes except 16x16
* for sub8x8, call once per 8x8 block
*****************************************************************************/
static int x264_partition_size_cavlc( x264_t *h, int i8, int i_pixel )
{
bs_t s;
const int i_mb_type = h->mb.i_type;
int b_8x16 = h->mb.i_partition == D_8x16;
int j;
s.i_bits_encoded = 0;
if( i_mb_type == P_8x8 )
cavlc_mb8x8_mvd( h, &s, 0, i8 );
else if( i_mb_type == P_L0 )
cavlc_mb_mvd( h, &s, 0, 4*i8, 4>>b_8x16 );
else if( i_mb_type > B_DIRECT && i_mb_type < B_8x8 )
{
if( x264_mb_type_list0_table[ i_mb_type ][!!i8] ) cavlc_mb_mvd( h, &s, 0, 4*i8, 4>>b_8x16 );
if( x264_mb_type_list1_table[ i_mb_type ][!!i8] ) cavlc_mb_mvd( h, &s, 1, 4*i8, 4>>b_8x16 );
}
else if( i_mb_type == B_8x8 )
{
cavlc_mb8x8_mvd( h, &s, 0, i8 );
cavlc_mb8x8_mvd( h, &s, 1, i8 );
}
else
{
x264_log(h, X264_LOG_ERROR, "invalid/unhandled mb_type\n" );
return 0;
}
for( j = (i_pixel < PIXEL_8x8); j >= 0; j-- )
{
x264_macroblock_luma_write_cavlc( h, &s, i8, i8 );
h->mb.cache.non_zero_count[x264_scan8[16+i8]] = array_non_zero_count( h->dct.luma4x4[16+i8] );
block_residual_write_cavlc( h, &s, DCT_CHROMA_AC, 16+i8, h->dct.luma4x4[16+i8]+1, 15 );
h->mb.cache.non_zero_count[x264_scan8[20+i8]] = array_non_zero_count( h->dct.luma4x4[20+i8] );
block_residual_write_cavlc( h, &s, DCT_CHROMA_AC, 20+i8, h->dct.luma4x4[20+i8]+1, 15 );
i8 += x264_pixel_size[i_pixel].h >> 3;
}
return s.i_bits_encoded;
}
static int x264_subpartition_size_cavlc( x264_t *h, int i4, int i_pixel )
{
bs_t s;
int b_8x4 = i_pixel == PIXEL_8x4;
s.i_bits_encoded = 0;
cavlc_mb_mvd( h, &s, 0, i4, 1+b_8x4 );
h->mb.cache.non_zero_count[x264_scan8[i4]] = array_non_zero_count( h->dct.luma4x4[i4] );
block_residual_write_cavlc( h, &s, DCT_LUMA_4x4, i4, h->dct.luma4x4[i4], 16 );
if( i_pixel != PIXEL_4x4 )
{
i4 += 2-b_8x4;
h->mb.cache.non_zero_count[x264_scan8[i4]] = array_non_zero_count( h->dct.luma4x4[i4] );
block_residual_write_cavlc( h, &s, DCT_LUMA_4x4, i4, h->dct.luma4x4[i4], 16 );
}
return s.i_bits_encoded;
}
static int cavlc_intra4x4_pred_size( x264_t *h, int i4, int i_mode )
{
if( x264_mb_predict_intra4x4_mode( h, i4 ) == x264_mb_pred_mode4x4_fix( i_mode ) )
return 1;
else
return 4;
}
static int x264_partition_i8x8_size_cavlc( x264_t *h, int i8, int i_mode )
{
int i4;
h->out.bs.i_bits_encoded = cavlc_intra4x4_pred_size( h, 4*i8, i_mode );
h->zigzagf.interleave_8x8_cavlc( h->dct.luma4x4[i8*4], h->dct.luma8x8[i8] );
for( i4 = 0; i4 < 4; i4++ )
{
h->mb.cache.non_zero_count[x264_scan8[i4+i8*4]] = array_non_zero_count( h->dct.luma4x4[i4+i8*4] );
block_residual_write_cavlc( h, &h->out.bs, DCT_LUMA_4x4, i4+i8*4, h->dct.luma4x4[i4+i8*4], 16 );
}
return h->out.bs.i_bits_encoded;
}
static int x264_partition_i4x4_size_cavlc( x264_t *h, int i4, int i_mode )
{
h->out.bs.i_bits_encoded = cavlc_intra4x4_pred_size( h, i4, i_mode );
h->mb.cache.non_zero_count[x264_scan8[i4]] = array_non_zero_count( h->dct.luma4x4[i4] );
block_residual_write_cavlc( h, &h->out.bs, DCT_LUMA_4x4, i4, h->dct.luma4x4[i4], 16 );
return h->out.bs.i_bits_encoded;
}
static int x264_i8x8_chroma_size_cavlc( x264_t *h )
{
h->out.bs.i_bits_encoded = bs_size_ue( x264_mb_pred_mode8x8c_fix[ h->mb.i_chroma_pred_mode ] );
if( h->mb.i_cbp_chroma )
{
block_residual_write_cavlc( h, &h->out.bs, DCT_CHROMA_DC, 25, h->dct.chroma_dc[0], 4 );
block_residual_write_cavlc( h, &h->out.bs, DCT_CHROMA_DC, 26, h->dct.chroma_dc[1], 4 );
if( h->mb.i_cbp_chroma == 2 )
{
int i;
for( i = 16; i < 24; i++ )
{
h->mb.cache.non_zero_count[x264_scan8[i]] = array_non_zero_count( h->dct.luma4x4[i] );
block_residual_write_cavlc( h, &h->out.bs, DCT_CHROMA_AC, i, h->dct.luma4x4[i]+1, 15 );
}
}
}
return h->out.bs.i_bits_encoded;
}
#endif