blob: cb03e94f9d689b3b8f2ec823a29b80515a774a4e [file] [log] [blame]
/*****************************************************************************
* x264: h264 encoder
*****************************************************************************
* Copyright (C) 2003-2008 x264 project
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
* Jason Garrett-Glaser <darkshikari@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
#include <math.h>
#include "common/common.h"
#include "common/cpu.h"
#include "set.h"
#include "analyse.h"
#include "ratecontrol.h"
#include "macroblock.h"
#if VISUALIZE
#include "common/visualize.h"
#endif
//#define DEBUG_MB_TYPE
#define NALU_OVERHEAD 5 // startcode + NAL type costs 5 bytes per frame
#define bs_write_ue bs_write_ue_big
static void x264_encoder_frame_end( x264_t *h, x264_t *thread_current,
x264_nal_t **pp_nal, int *pi_nal,
x264_picture_t *pic_out );
/****************************************************************************
*
******************************* x264 libs **********************************
*
****************************************************************************/
static float x264_psnr( int64_t i_sqe, int64_t i_size )
{
double f_mse = (double)i_sqe / ((double)65025.0 * (double)i_size);
if( f_mse <= 0.0000000001 ) /* Max 100dB */
return 100;
return (float)(-10.0 * log( f_mse ) / log( 10.0 ));
}
static void x264_frame_dump( x264_t *h )
{
FILE *f = fopen( h->param.psz_dump_yuv, "r+b" );
int i, y;
if( !f )
return;
/* Write the frame in display order */
fseek( f, h->fdec->i_frame * h->param.i_height * h->param.i_width * 3/2, SEEK_SET );
for( i = 0; i < h->fdec->i_plane; i++ )
for( y = 0; y < h->param.i_height >> !!i; y++ )
fwrite( &h->fdec->plane[i][y*h->fdec->i_stride[i]], 1, h->param.i_width >> !!i, f );
fclose( f );
}
/* Fill "default" values */
static void x264_slice_header_init( x264_t *h, x264_slice_header_t *sh,
x264_sps_t *sps, x264_pps_t *pps,
int i_idr_pic_id, int i_frame, int i_qp )
{
x264_param_t *param = &h->param;
int i;
/* First we fill all field */
sh->sps = sps;
sh->pps = pps;
sh->i_first_mb = 0;
sh->i_last_mb = h->sps->i_mb_width * h->sps->i_mb_height;
sh->i_pps_id = pps->i_id;
sh->i_frame_num = i_frame;
sh->b_mbaff = h->param.b_interlaced;
sh->b_field_pic = 0; /* no field support for now */
sh->b_bottom_field = 0; /* not yet used */
sh->i_idr_pic_id = i_idr_pic_id;
/* poc stuff, fixed later */
sh->i_poc_lsb = 0;
sh->i_delta_poc_bottom = 0;
sh->i_delta_poc[0] = 0;
sh->i_delta_poc[1] = 0;
sh->i_redundant_pic_cnt = 0;
if( !h->mb.b_direct_auto_read )
{
if( h->mb.b_direct_auto_write )
sh->b_direct_spatial_mv_pred = ( h->stat.i_direct_score[1] > h->stat.i_direct_score[0] );
else
sh->b_direct_spatial_mv_pred = ( param->analyse.i_direct_mv_pred == X264_DIRECT_PRED_SPATIAL );
}
/* else b_direct_spatial_mv_pred was read from the 2pass statsfile */
sh->b_num_ref_idx_override = 0;
sh->i_num_ref_idx_l0_active = 1;
sh->i_num_ref_idx_l1_active = 1;
sh->b_ref_pic_list_reordering_l0 = h->b_ref_reorder[0];
sh->b_ref_pic_list_reordering_l1 = h->b_ref_reorder[1];
/* If the ref list isn't in the default order, construct reordering header */
/* List1 reordering isn't needed yet */
if( sh->b_ref_pic_list_reordering_l0 )
{
int pred_frame_num = i_frame;
for( i = 0; i < h->i_ref0; i++ )
{
int diff = h->fref0[i]->i_frame_num - pred_frame_num;
if( diff == 0 )
x264_log( h, X264_LOG_ERROR, "diff frame num == 0\n" );
sh->ref_pic_list_order[0][i].idc = ( diff > 0 );
sh->ref_pic_list_order[0][i].arg = abs( diff ) - 1;
pred_frame_num = h->fref0[i]->i_frame_num;
}
}
sh->i_cabac_init_idc = param->i_cabac_init_idc;
sh->i_qp = i_qp;
sh->i_qp_delta = i_qp - pps->i_pic_init_qp;
sh->b_sp_for_swidth = 0;
sh->i_qs_delta = 0;
/* If effective qp <= 15, deblocking would have no effect anyway */
if( param->b_deblocking_filter
&& ( h->mb.b_variable_qp
|| 15 < i_qp + 2 * X264_MIN(param->i_deblocking_filter_alphac0, param->i_deblocking_filter_beta) ) )
{
sh->i_disable_deblocking_filter_idc = 0;
}
else
{
sh->i_disable_deblocking_filter_idc = 1;
}
sh->i_alpha_c0_offset = param->i_deblocking_filter_alphac0 << 1;
sh->i_beta_offset = param->i_deblocking_filter_beta << 1;
}
static void x264_slice_header_write( bs_t *s, x264_slice_header_t *sh, int i_nal_ref_idc )
{
int i;
if( sh->b_mbaff )
{
assert( sh->i_first_mb % (2*sh->sps->i_mb_width) == 0 );
bs_write_ue( s, sh->i_first_mb >> 1 );
}
else
bs_write_ue( s, sh->i_first_mb );
bs_write_ue( s, sh->i_type + 5 ); /* same type things */
bs_write_ue( s, sh->i_pps_id );
bs_write( s, sh->sps->i_log2_max_frame_num, sh->i_frame_num );
if( !sh->sps->b_frame_mbs_only )
{
bs_write1( s, sh->b_field_pic );
if ( sh->b_field_pic )
bs_write1( s, sh->b_bottom_field );
}
if( sh->i_idr_pic_id >= 0 ) /* NAL IDR */
{
bs_write_ue( s, sh->i_idr_pic_id );
}
if( sh->sps->i_poc_type == 0 )
{
bs_write( s, sh->sps->i_log2_max_poc_lsb, sh->i_poc_lsb );
if( sh->pps->b_pic_order && !sh->b_field_pic )
{
bs_write_se( s, sh->i_delta_poc_bottom );
}
}
else if( sh->sps->i_poc_type == 1 && !sh->sps->b_delta_pic_order_always_zero )
{
bs_write_se( s, sh->i_delta_poc[0] );
if( sh->pps->b_pic_order && !sh->b_field_pic )
{
bs_write_se( s, sh->i_delta_poc[1] );
}
}
if( sh->pps->b_redundant_pic_cnt )
{
bs_write_ue( s, sh->i_redundant_pic_cnt );
}
if( sh->i_type == SLICE_TYPE_B )
{
bs_write1( s, sh->b_direct_spatial_mv_pred );
}
if( sh->i_type == SLICE_TYPE_P || sh->i_type == SLICE_TYPE_SP || sh->i_type == SLICE_TYPE_B )
{
bs_write1( s, sh->b_num_ref_idx_override );
if( sh->b_num_ref_idx_override )
{
bs_write_ue( s, sh->i_num_ref_idx_l0_active - 1 );
if( sh->i_type == SLICE_TYPE_B )
{
bs_write_ue( s, sh->i_num_ref_idx_l1_active - 1 );
}
}
}
/* ref pic list reordering */
if( sh->i_type != SLICE_TYPE_I )
{
bs_write1( s, sh->b_ref_pic_list_reordering_l0 );
if( sh->b_ref_pic_list_reordering_l0 )
{
for( i = 0; i < sh->i_num_ref_idx_l0_active; i++ )
{
bs_write_ue( s, sh->ref_pic_list_order[0][i].idc );
bs_write_ue( s, sh->ref_pic_list_order[0][i].arg );
}
bs_write_ue( s, 3 );
}
}
if( sh->i_type == SLICE_TYPE_B )
{
bs_write1( s, sh->b_ref_pic_list_reordering_l1 );
if( sh->b_ref_pic_list_reordering_l1 )
{
for( i = 0; i < sh->i_num_ref_idx_l1_active; i++ )
{
bs_write_ue( s, sh->ref_pic_list_order[1][i].idc );
bs_write_ue( s, sh->ref_pic_list_order[1][i].arg );
}
bs_write_ue( s, 3 );
}
}
if( ( sh->pps->b_weighted_pred && ( sh->i_type == SLICE_TYPE_P || sh->i_type == SLICE_TYPE_SP ) ) ||
( sh->pps->b_weighted_bipred == 1 && sh->i_type == SLICE_TYPE_B ) )
{
/* FIXME */
}
if( i_nal_ref_idc != 0 )
{
if( sh->i_idr_pic_id >= 0 )
{
bs_write1( s, 0 ); /* no output of prior pics flag */
bs_write1( s, 0 ); /* long term reference flag */
}
else
{
bs_write1( s, 0 ); /* adaptive_ref_pic_marking_mode_flag */
}
}
if( sh->pps->b_cabac && sh->i_type != SLICE_TYPE_I )
{
bs_write_ue( s, sh->i_cabac_init_idc );
}
bs_write_se( s, sh->i_qp_delta ); /* slice qp delta */
if( sh->pps->b_deblocking_filter_control )
{
bs_write_ue( s, sh->i_disable_deblocking_filter_idc );
if( sh->i_disable_deblocking_filter_idc != 1 )
{
bs_write_se( s, sh->i_alpha_c0_offset >> 1 );
bs_write_se( s, sh->i_beta_offset >> 1 );
}
}
}
/* If we are within a reasonable distance of the end of the memory allocated for the bitstream, */
/* reallocate, adding an arbitrary amount of space (100 kilobytes). */
static void x264_bitstream_check_buffer( x264_t *h )
{
if( ( h->param.b_cabac && (h->cabac.p_end - h->cabac.p < 2500) )
|| ( h->out.bs.p_end - h->out.bs.p < 2500 ) )
{
uint8_t *bs_bak = h->out.p_bitstream;
intptr_t delta;
int i;
h->out.i_bitstream += 100000;
h->out.p_bitstream = x264_realloc( h->out.p_bitstream, h->out.i_bitstream );
delta = h->out.p_bitstream - bs_bak;
h->out.bs.p_start += delta;
h->out.bs.p += delta;
h->out.bs.p_end = h->out.p_bitstream + h->out.i_bitstream;
h->cabac.p_start += delta;
h->cabac.p += delta;
h->cabac.p_end = h->out.p_bitstream + h->out.i_bitstream;
for( i = 0; i <= h->out.i_nal; i++ )
h->out.nal[i].p_payload += delta;
}
}
/****************************************************************************
*
****************************************************************************
****************************** External API*********************************
****************************************************************************
*
****************************************************************************/
static int x264_validate_parameters( x264_t *h )
{
#ifdef HAVE_MMX
if( !(x264_cpu_detect() & X264_CPU_MMXEXT) )
{
x264_log( h, X264_LOG_ERROR, "your cpu does not support MMXEXT, but x264 was compiled with asm support\n");
x264_log( h, X264_LOG_ERROR, "to run x264, recompile without asm support (configure --disable-asm)\n");
return -1;
}
#endif
if( h->param.i_width <= 0 || h->param.i_height <= 0 )
{
x264_log( h, X264_LOG_ERROR, "invalid width x height (%dx%d)\n",
h->param.i_width, h->param.i_height );
return -1;
}
if( h->param.i_width % 2 || h->param.i_height % 2 )
{
x264_log( h, X264_LOG_ERROR, "width or height not divisible by 2 (%dx%d)\n",
h->param.i_width, h->param.i_height );
return -1;
}
if( h->param.i_csp != X264_CSP_I420 )
{
x264_log( h, X264_LOG_ERROR, "invalid CSP (only I420 supported)\n" );
return -1;
}
if( h->param.i_threads == 0 )
h->param.i_threads = x264_cpu_num_processors() * 3/2;
h->param.i_threads = x264_clip3( h->param.i_threads, 1, X264_THREAD_MAX );
if( h->param.i_threads > 1 )
{
#ifndef HAVE_PTHREAD
x264_log( h, X264_LOG_WARNING, "not compiled with pthread support!\n");
h->param.i_threads = 1;
#else
if( h->param.i_scenecut_threshold >= 0 )
h->param.b_pre_scenecut = 1;
#endif
}
if( h->param.b_interlaced )
{
if( h->param.analyse.i_me_method >= X264_ME_ESA )
{
x264_log( h, X264_LOG_WARNING, "interlace + me=esa is not implemented\n" );
h->param.analyse.i_me_method = X264_ME_UMH;
}
if( h->param.analyse.i_direct_mv_pred > X264_DIRECT_PRED_SPATIAL )
{
x264_log( h, X264_LOG_WARNING, "interlace + direct=temporal is not implemented\n" );
h->param.analyse.i_direct_mv_pred = X264_DIRECT_PRED_SPATIAL;
}
}
if( h->param.rc.i_rc_method < 0 || h->param.rc.i_rc_method > 2 )
{
x264_log( h, X264_LOG_ERROR, "no ratecontrol method specified\n" );
return -1;
}
h->param.rc.f_rf_constant = x264_clip3f( h->param.rc.f_rf_constant, 0, 51 );
h->param.rc.i_qp_constant = x264_clip3( h->param.rc.i_qp_constant, 0, 51 );
if( h->param.rc.i_rc_method == X264_RC_CRF )
h->param.rc.i_qp_constant = h->param.rc.f_rf_constant;
if( (h->param.rc.i_rc_method == X264_RC_CQP || h->param.rc.i_rc_method == X264_RC_CRF)
&& h->param.rc.i_qp_constant == 0 )
{
h->mb.b_lossless = 1;
h->param.i_cqm_preset = X264_CQM_FLAT;
h->param.psz_cqm_file = NULL;
h->param.rc.i_rc_method = X264_RC_CQP;
h->param.rc.f_ip_factor = 1;
h->param.rc.f_pb_factor = 1;
h->param.analyse.b_psnr = 0;
h->param.analyse.b_ssim = 0;
h->param.analyse.i_chroma_qp_offset = 0;
h->param.analyse.i_trellis = 0;
h->param.analyse.b_fast_pskip = 0;
h->param.analyse.i_noise_reduction = 0;
h->param.analyse.f_psy_rd = 0;
/* 8x8dct is not useful at all in CAVLC lossless */
if( !h->param.b_cabac )
h->param.analyse.b_transform_8x8 = 0;
}
if( h->param.rc.i_rc_method == X264_RC_CQP )
{
float qp_p = h->param.rc.i_qp_constant;
float qp_i = qp_p - 6*log(h->param.rc.f_ip_factor)/log(2);
float qp_b = qp_p + 6*log(h->param.rc.f_pb_factor)/log(2);
h->param.rc.i_qp_min = x264_clip3( (int)(X264_MIN3( qp_p, qp_i, qp_b )), 0, 51 );
h->param.rc.i_qp_max = x264_clip3( (int)(X264_MAX3( qp_p, qp_i, qp_b ) + .999), 0, 51 );
h->param.rc.i_aq_mode = 0;
}
h->param.rc.i_qp_max = x264_clip3( h->param.rc.i_qp_max, 0, 51 );
h->param.rc.i_qp_min = x264_clip3( h->param.rc.i_qp_min, 0, h->param.rc.i_qp_max );
if( ( h->param.i_width % 16 || h->param.i_height % 16 )
&& h->param.i_height != 1080 && !h->mb.b_lossless )
{
// There's nothing special about 1080 in that the warning still applies to it,
// but chances are the user can't help it if his content is already 1080p,
// so there's no point in warning in that case.
x264_log( h, X264_LOG_WARNING,
"width or height not divisible by 16 (%dx%d), compression will suffer.\n",
h->param.i_width, h->param.i_height );
}
h->param.i_frame_reference = x264_clip3( h->param.i_frame_reference, 1, 16 );
if( h->param.i_keyint_max <= 0 )
h->param.i_keyint_max = 1;
h->param.i_keyint_min = x264_clip3( h->param.i_keyint_min, 1, h->param.i_keyint_max/2+1 );
if( !h->param.analyse.i_subpel_refine && h->param.analyse.i_direct_mv_pred > X264_DIRECT_PRED_SPATIAL )
{
x264_log( h, X264_LOG_WARNING, "subme=0 + direct=temporal is not supported\n" );
h->param.analyse.i_direct_mv_pred = X264_DIRECT_PRED_SPATIAL;
}
h->param.i_bframe = x264_clip3( h->param.i_bframe, 0, X264_BFRAME_MAX );
h->param.i_bframe_bias = x264_clip3( h->param.i_bframe_bias, -90, 100 );
h->param.b_bframe_pyramid = h->param.b_bframe_pyramid && h->param.i_bframe > 1;
if( !h->param.i_bframe )
h->param.i_bframe_adaptive = X264_B_ADAPT_NONE;
h->param.analyse.b_weighted_bipred = h->param.analyse.b_weighted_bipred && h->param.i_bframe > 0;
h->mb.b_direct_auto_write = h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO
&& h->param.i_bframe
&& ( h->param.rc.b_stat_write || !h->param.rc.b_stat_read );
if( h->param.i_scenecut_threshold < 0 )
h->param.b_pre_scenecut = 0;
h->param.i_deblocking_filter_alphac0 = x264_clip3( h->param.i_deblocking_filter_alphac0, -6, 6 );
h->param.i_deblocking_filter_beta = x264_clip3( h->param.i_deblocking_filter_beta, -6, 6 );
h->param.analyse.i_luma_deadzone[0] = x264_clip3( h->param.analyse.i_luma_deadzone[0], 0, 32 );
h->param.analyse.i_luma_deadzone[1] = x264_clip3( h->param.analyse.i_luma_deadzone[1], 0, 32 );
h->param.i_cabac_init_idc = x264_clip3( h->param.i_cabac_init_idc, 0, 2 );
if( h->param.i_cqm_preset < X264_CQM_FLAT || h->param.i_cqm_preset > X264_CQM_CUSTOM )
h->param.i_cqm_preset = X264_CQM_FLAT;
if( h->param.analyse.i_me_method < X264_ME_DIA ||
h->param.analyse.i_me_method > X264_ME_TESA )
h->param.analyse.i_me_method = X264_ME_HEX;
if( h->param.analyse.i_me_range < 4 )
h->param.analyse.i_me_range = 4;
if( h->param.analyse.i_me_range > 16 && h->param.analyse.i_me_method <= X264_ME_HEX )
h->param.analyse.i_me_range = 16;
if( h->param.analyse.i_me_method == X264_ME_TESA &&
(h->mb.b_lossless || h->param.analyse.i_subpel_refine <= 1) )
h->param.analyse.i_me_method = X264_ME_ESA;
h->param.analyse.i_subpel_refine = x264_clip3( h->param.analyse.i_subpel_refine, 0, 9 );
h->param.analyse.b_mixed_references = h->param.analyse.b_mixed_references && h->param.i_frame_reference > 1;
h->param.analyse.inter &= X264_ANALYSE_PSUB16x16|X264_ANALYSE_PSUB8x8|X264_ANALYSE_BSUB16x16|
X264_ANALYSE_I4x4|X264_ANALYSE_I8x8;
h->param.analyse.intra &= X264_ANALYSE_I4x4|X264_ANALYSE_I8x8;
if( !(h->param.analyse.inter & X264_ANALYSE_PSUB16x16) )
h->param.analyse.inter &= ~X264_ANALYSE_PSUB8x8;
if( !h->param.analyse.b_transform_8x8 )
{
h->param.analyse.inter &= ~X264_ANALYSE_I8x8;
h->param.analyse.intra &= ~X264_ANALYSE_I8x8;
}
h->param.analyse.i_chroma_qp_offset = x264_clip3(h->param.analyse.i_chroma_qp_offset, -12, 12);
if( !h->param.b_cabac )
h->param.analyse.i_trellis = 0;
h->param.analyse.i_trellis = x264_clip3( h->param.analyse.i_trellis, 0, 2 );
if( !h->param.analyse.i_trellis )
h->param.analyse.f_psy_trellis = 0;
h->param.analyse.f_psy_rd = x264_clip3f( h->param.analyse.f_psy_rd, 0, 10 );
h->param.analyse.f_psy_trellis = x264_clip3f( h->param.analyse.f_psy_trellis, 0, 10 );
if( h->param.analyse.i_subpel_refine < 6 )
h->param.analyse.f_psy_rd = 0;
h->mb.i_psy_rd = FIX8( h->param.analyse.f_psy_rd );
/* Psy RDO increases overall quantizers to improve the quality of luma--this indirectly hurts chroma quality */
/* so we lower the chroma QP offset to compensate */
/* This can be triggered repeatedly on multiple calls to parameter_validate, but since encoding
* uses the pps chroma qp offset not the param chroma qp offset, this is not a problem. */
if( h->mb.i_psy_rd )
h->param.analyse.i_chroma_qp_offset -= h->param.analyse.f_psy_rd < 0.25 ? 1 : 2;
h->mb.i_psy_trellis = FIX8( h->param.analyse.f_psy_trellis / 4 );
/* Psy trellis has a similar effect. */
if( h->mb.i_psy_trellis )
h->param.analyse.i_chroma_qp_offset -= h->param.analyse.f_psy_trellis < 0.25 ? 1 : 2;
else
h->mb.i_psy_trellis = 0;
h->param.analyse.i_chroma_qp_offset = x264_clip3(h->param.analyse.i_chroma_qp_offset, -12, 12);
h->param.rc.i_aq_mode = x264_clip3( h->param.rc.i_aq_mode, 0, 1 );
h->param.rc.f_aq_strength = x264_clip3f( h->param.rc.f_aq_strength, 0, 3 );
if( h->param.rc.f_aq_strength == 0 )
h->param.rc.i_aq_mode = 0;
h->param.analyse.i_noise_reduction = x264_clip3( h->param.analyse.i_noise_reduction, 0, 1<<16 );
{
const x264_level_t *l = x264_levels;
if( h->param.i_level_idc < 0 )
{
if( h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.i_vbv_buffer_size <= 0 )
h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate * 2;
h->sps = h->sps_array;
x264_sps_init( h->sps, h->param.i_sps_id, &h->param );
do h->param.i_level_idc = l->level_idc;
while( l[1].level_idc && x264_validate_levels( h, 0 ) && l++ );
if( h->param.rc.i_vbv_buffer_size <= 0 )
h->param.rc.i_vbv_max_bitrate = 0;
}
else
{
while( l->level_idc && l->level_idc != h->param.i_level_idc )
l++;
if( l->level_idc == 0 )
{
x264_log( h, X264_LOG_ERROR, "invalid level_idc: %d\n", h->param.i_level_idc );
return -1;
}
}
if( h->param.analyse.i_mv_range <= 0 )
h->param.analyse.i_mv_range = l->mv_range >> h->param.b_interlaced;
else
h->param.analyse.i_mv_range = x264_clip3(h->param.analyse.i_mv_range, 32, 512 >> h->param.b_interlaced);
if( h->param.analyse.i_direct_8x8_inference < 0 )
h->param.analyse.i_direct_8x8_inference = l->direct8x8;
}
if( h->param.i_threads > 1 )
{
int r = h->param.analyse.i_mv_range_thread;
int r2;
if( r <= 0 )
{
// half of the available space is reserved and divided evenly among the threads,
// the rest is allocated to whichever thread is far enough ahead to use it.
// reserving more space increases quality for some videos, but costs more time
// in thread synchronization.
int max_range = (h->param.i_height + X264_THREAD_HEIGHT) / h->param.i_threads - X264_THREAD_HEIGHT;
r = max_range / 2;
}
r = X264_MAX( r, h->param.analyse.i_me_range );
r = X264_MIN( r, h->param.analyse.i_mv_range );
// round up to use the whole mb row
r2 = (r & ~15) + ((-X264_THREAD_HEIGHT) & 15);
if( r2 < r )
r2 += 16;
x264_log( h, X264_LOG_DEBUG, "using mv_range_thread = %d\n", r2 );
h->param.analyse.i_mv_range_thread = r2;
}
if( h->param.rc.f_qblur < 0 )
h->param.rc.f_qblur = 0;
if( h->param.rc.f_complexity_blur < 0 )
h->param.rc.f_complexity_blur = 0;
h->param.i_sps_id &= 31;
if( h->param.i_log_level < X264_LOG_INFO )
{
h->param.analyse.b_psnr = 0;
h->param.analyse.b_ssim = 0;
}
/* ensure the booleans are 0 or 1 so they can be used in math */
#define BOOLIFY(x) h->param.x = !!h->param.x
BOOLIFY( b_cabac );
BOOLIFY( b_deblocking_filter );
BOOLIFY( b_interlaced );
BOOLIFY( analyse.b_transform_8x8 );
BOOLIFY( analyse.i_direct_8x8_inference );
BOOLIFY( analyse.b_chroma_me );
BOOLIFY( analyse.b_fast_pskip );
BOOLIFY( rc.b_stat_write );
BOOLIFY( rc.b_stat_read );
#undef BOOLIFY
return 0;
}
static void mbcmp_init( x264_t *h )
{
int satd = !h->mb.b_lossless && h->param.analyse.i_subpel_refine > 1;
memcpy( h->pixf.mbcmp, satd ? h->pixf.satd : h->pixf.sad_aligned, sizeof(h->pixf.mbcmp) );
memcpy( h->pixf.mbcmp_unaligned, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.mbcmp_unaligned) );
h->pixf.intra_mbcmp_x3_16x16 = satd ? h->pixf.intra_satd_x3_16x16 : h->pixf.intra_sad_x3_16x16;
satd &= h->param.analyse.i_me_method == X264_ME_TESA;
memcpy( h->pixf.fpelcmp, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.fpelcmp) );
memcpy( h->pixf.fpelcmp_x3, satd ? h->pixf.satd_x3 : h->pixf.sad_x3, sizeof(h->pixf.fpelcmp_x3) );
memcpy( h->pixf.fpelcmp_x4, satd ? h->pixf.satd_x4 : h->pixf.sad_x4, sizeof(h->pixf.fpelcmp_x4) );
}
/****************************************************************************
* x264_encoder_open:
****************************************************************************/
x264_t *x264_encoder_open ( x264_param_t *param )
{
x264_t *h = x264_malloc( sizeof( x264_t ) );
char buf[1000], *p;
int i;
memset( h, 0, sizeof( x264_t ) );
/* Create a copy of param */
memcpy( &h->param, param, sizeof( x264_param_t ) );
if( x264_validate_parameters( h ) < 0 )
{
x264_free( h );
return NULL;
}
if( h->param.psz_cqm_file )
if( x264_cqm_parse_file( h, h->param.psz_cqm_file ) < 0 )
{
x264_free( h );
return NULL;
}
if( h->param.rc.psz_stat_out )
h->param.rc.psz_stat_out = strdup( h->param.rc.psz_stat_out );
if( h->param.rc.psz_stat_in )
h->param.rc.psz_stat_in = strdup( h->param.rc.psz_stat_in );
/* VUI */
if( h->param.vui.i_sar_width > 0 && h->param.vui.i_sar_height > 0 )
{
int i_w = param->vui.i_sar_width;
int i_h = param->vui.i_sar_height;
x264_reduce_fraction( &i_w, &i_h );
while( i_w > 65535 || i_h > 65535 )
{
i_w /= 2;
i_h /= 2;
}
h->param.vui.i_sar_width = 0;
h->param.vui.i_sar_height = 0;
if( i_w == 0 || i_h == 0 )
{
x264_log( h, X264_LOG_WARNING, "cannot create valid sample aspect ratio\n" );
}
else
{
x264_log( h, X264_LOG_INFO, "using SAR=%d/%d\n", i_w, i_h );
h->param.vui.i_sar_width = i_w;
h->param.vui.i_sar_height = i_h;
}
}
x264_reduce_fraction( &h->param.i_fps_num, &h->param.i_fps_den );
/* Init x264_t */
h->i_frame = 0;
h->i_frame_num = 0;
h->i_idr_pic_id = 0;
h->sps = &h->sps_array[0];
x264_sps_init( h->sps, h->param.i_sps_id, &h->param );
h->pps = &h->pps_array[0];
x264_pps_init( h->pps, h->param.i_sps_id, &h->param, h->sps);
x264_validate_levels( h, 1 );
if( x264_cqm_init( h ) < 0 )
{
x264_free( h );
return NULL;
}
h->mb.i_mb_count = h->sps->i_mb_width * h->sps->i_mb_height;
/* Init frames. */
if( h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS )
h->frames.i_delay = X264_MAX(h->param.i_bframe,3)*4 + h->param.i_threads - 1;
else
h->frames.i_delay = h->param.i_bframe + h->param.i_threads - 1;
h->frames.i_max_ref0 = h->param.i_frame_reference;
h->frames.i_max_ref1 = h->sps->vui.i_num_reorder_frames;
h->frames.i_max_dpb = h->sps->vui.i_max_dec_frame_buffering;
h->frames.b_have_lowres = !h->param.rc.b_stat_read
&& ( h->param.rc.i_rc_method == X264_RC_ABR
|| h->param.rc.i_rc_method == X264_RC_CRF
|| h->param.i_bframe_adaptive
|| h->param.b_pre_scenecut );
h->frames.b_have_lowres |= (h->param.rc.b_stat_read && h->param.rc.i_vbv_buffer_size > 0);
h->frames.i_last_idr = - h->param.i_keyint_max;
h->frames.i_input = 0;
h->frames.last_nonb = NULL;
h->i_ref0 = 0;
h->i_ref1 = 0;
h->chroma_qp_table = i_chroma_qp_table + 12 + h->pps->i_chroma_qp_index_offset;
x264_rdo_init( );
/* init CPU functions */
x264_predict_16x16_init( h->param.cpu, h->predict_16x16 );
x264_predict_8x8c_init( h->param.cpu, h->predict_8x8c );
x264_predict_8x8_init( h->param.cpu, h->predict_8x8 );
x264_predict_4x4_init( h->param.cpu, h->predict_4x4 );
x264_pixel_init( h->param.cpu, &h->pixf );
x264_dct_init( h->param.cpu, &h->dctf );
x264_zigzag_init( h->param.cpu, &h->zigzagf, h->param.b_interlaced );
x264_mc_init( h->param.cpu, &h->mc );
x264_quant_init( h, h->param.cpu, &h->quantf );
x264_deblock_init( h->param.cpu, &h->loopf );
x264_dct_init_weights();
mbcmp_init( h );
p = buf + sprintf( buf, "using cpu capabilities:" );
for( i=0; x264_cpu_names[i].flags; i++ )
{
if( !strcmp(x264_cpu_names[i].name, "SSE2")
&& param->cpu & (X264_CPU_SSE2_IS_FAST|X264_CPU_SSE2_IS_SLOW) )
continue;
if( !strcmp(x264_cpu_names[i].name, "SSE3")
&& (param->cpu & X264_CPU_SSSE3 || !(param->cpu & X264_CPU_CACHELINE_64)) )
continue;
if( !strcmp(x264_cpu_names[i].name, "SSE4.1")
&& (param->cpu & X264_CPU_SSE42) )
continue;
if( (param->cpu & x264_cpu_names[i].flags) == x264_cpu_names[i].flags
&& (!i || x264_cpu_names[i].flags != x264_cpu_names[i-1].flags) )
p += sprintf( p, " %s", x264_cpu_names[i].name );
}
if( !param->cpu )
p += sprintf( p, " none!" );
x264_log( h, X264_LOG_INFO, "%s\n", buf );
h->out.i_nal = 0;
h->out.i_bitstream = X264_MAX( 1000000, h->param.i_width * h->param.i_height * 4
* ( h->param.rc.i_rc_method == X264_RC_ABR ? pow( 0.95, h->param.rc.i_qp_min )
: pow( 0.95, h->param.rc.i_qp_constant ) * X264_MAX( 1, h->param.rc.f_ip_factor )));
h->thread[0] = h;
h->i_thread_num = 0;
for( i = 1; i < h->param.i_threads; i++ )
h->thread[i] = x264_malloc( sizeof(x264_t) );
for( i = 0; i < h->param.i_threads; i++ )
{
if( i > 0 )
*h->thread[i] = *h;
h->thread[i]->fdec = x264_frame_pop_unused( h );
h->thread[i]->out.p_bitstream = x264_malloc( h->out.i_bitstream );
if( x264_macroblock_cache_init( h->thread[i] ) < 0 )
return NULL;
}
if( x264_ratecontrol_new( h ) < 0 )
return NULL;
if( h->param.psz_dump_yuv )
{
/* create or truncate the reconstructed video file */
FILE *f = fopen( h->param.psz_dump_yuv, "w" );
if( f )
fclose( f );
else
{
x264_log( h, X264_LOG_ERROR, "can't write to fdec.yuv\n" );
x264_free( h );
return NULL;
}
}
x264_log( h, X264_LOG_INFO, "profile %s, level %d.%d\n",
h->sps->i_profile_idc == PROFILE_BASELINE ? "Baseline" :
h->sps->i_profile_idc == PROFILE_MAIN ? "Main" :
h->sps->i_profile_idc == PROFILE_HIGH ? "High" :
"High 4:4:4 Predictive", h->sps->i_level_idc/10, h->sps->i_level_idc%10 );
return h;
}
/****************************************************************************
* x264_encoder_reconfig:
****************************************************************************/
int x264_encoder_reconfig( x264_t *h, x264_param_t *param )
{
#define COPY(var) h->param.var = param->var
COPY( i_frame_reference ); // but never uses more refs than initially specified
COPY( i_bframe_bias );
if( h->param.i_scenecut_threshold >= 0 && param->i_scenecut_threshold >= 0 )
COPY( i_scenecut_threshold ); // can't turn it on or off, only vary the threshold
COPY( b_deblocking_filter );
COPY( i_deblocking_filter_alphac0 );
COPY( i_deblocking_filter_beta );
COPY( analyse.intra );
COPY( analyse.inter );
COPY( analyse.i_direct_mv_pred );
COPY( analyse.i_me_range );
COPY( analyse.i_noise_reduction );
/* We can't switch out of subme=0 during encoding. */
if( h->param.analyse.i_subpel_refine )
COPY( analyse.i_subpel_refine );
COPY( analyse.i_trellis );
COPY( analyse.b_chroma_me );
COPY( analyse.b_dct_decimate );
COPY( analyse.b_fast_pskip );
COPY( analyse.b_mixed_references );
COPY( analyse.f_psy_rd );
COPY( analyse.f_psy_trellis );
// can only twiddle these if they were enabled to begin with:
if( h->param.analyse.i_me_method >= X264_ME_ESA || param->analyse.i_me_method < X264_ME_ESA )
COPY( analyse.i_me_method );
if( h->pps->b_transform_8x8_mode )
COPY( analyse.b_transform_8x8 );
if( h->frames.i_max_ref1 > 1 )
COPY( b_bframe_pyramid );
#undef COPY
mbcmp_init( h );
return x264_validate_parameters( h );
}
/* internal usage */
static void x264_nal_start( x264_t *h, int i_type, int i_ref_idc )
{
x264_nal_t *nal = &h->out.nal[h->out.i_nal];
nal->i_ref_idc = i_ref_idc;
nal->i_type = i_type;
nal->i_payload= 0;
nal->p_payload= &h->out.p_bitstream[bs_pos( &h->out.bs ) / 8];
}
static void x264_nal_end( x264_t *h )
{
x264_nal_t *nal = &h->out.nal[h->out.i_nal];
nal->i_payload = &h->out.p_bitstream[bs_pos( &h->out.bs ) / 8] - nal->p_payload;
h->out.i_nal++;
}
/****************************************************************************
* x264_encoder_headers:
****************************************************************************/
int x264_encoder_headers( x264_t *h, x264_nal_t **pp_nal, int *pi_nal )
{
/* init bitstream context */
h->out.i_nal = 0;
bs_init( &h->out.bs, h->out.p_bitstream, h->out.i_bitstream );
/* Put SPS and PPS */
if( h->i_frame == 0 )
{
/* identify ourself */
x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_version_write( h, &h->out.bs );
x264_nal_end( h );
/* generate sequence parameters */
x264_nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST );
x264_sps_write( &h->out.bs, h->sps );
x264_nal_end( h );
/* generate picture parameters */
x264_nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST );
x264_pps_write( &h->out.bs, h->pps );
x264_nal_end( h );
}
/* now set output*/
*pi_nal = h->out.i_nal;
*pp_nal = &h->out.nal[0];
h->out.i_nal = 0;
return 0;
}
static inline void x264_reference_build_list( x264_t *h, int i_poc )
{
int i;
int b_ok;
/* build ref list 0/1 */
h->i_ref0 = 0;
h->i_ref1 = 0;
for( i = 0; h->frames.reference[i]; i++ )
{
if( h->frames.reference[i]->i_poc < i_poc )
{
h->fref0[h->i_ref0++] = h->frames.reference[i];
}
else if( h->frames.reference[i]->i_poc > i_poc )
{
h->fref1[h->i_ref1++] = h->frames.reference[i];
}
}
/* Order ref0 from higher to lower poc */
do
{
b_ok = 1;
for( i = 0; i < h->i_ref0 - 1; i++ )
{
if( h->fref0[i]->i_poc < h->fref0[i+1]->i_poc )
{
XCHG( x264_frame_t*, h->fref0[i], h->fref0[i+1] );
b_ok = 0;
break;
}
}
} while( !b_ok );
/* Order ref1 from lower to higher poc (bubble sort) for B-frame */
do
{
b_ok = 1;
for( i = 0; i < h->i_ref1 - 1; i++ )
{
if( h->fref1[i]->i_poc > h->fref1[i+1]->i_poc )
{
XCHG( x264_frame_t*, h->fref1[i], h->fref1[i+1] );
b_ok = 0;
break;
}
}
} while( !b_ok );
/* In the standard, a P-frame's ref list is sorted by frame_num.
* We use POC, but check whether explicit reordering is needed */
h->b_ref_reorder[0] =
h->b_ref_reorder[1] = 0;
if( h->sh.i_type == SLICE_TYPE_P )
{
for( i = 0; i < h->i_ref0 - 1; i++ )
if( h->fref0[i]->i_frame_num < h->fref0[i+1]->i_frame_num )
{
h->b_ref_reorder[0] = 1;
break;
}
}
h->i_ref1 = X264_MIN( h->i_ref1, h->frames.i_max_ref1 );
h->i_ref0 = X264_MIN( h->i_ref0, h->frames.i_max_ref0 );
h->i_ref0 = X264_MIN( h->i_ref0, h->param.i_frame_reference ); // if reconfig() has lowered the limit
assert( h->i_ref0 + h->i_ref1 <= 16 );
h->mb.pic.i_fref[0] = h->i_ref0;
h->mb.pic.i_fref[1] = h->i_ref1;
}
static void x264_fdec_filter_row( x264_t *h, int mb_y )
{
/* mb_y is the mb to be encoded next, not the mb to be filtered here */
int b_hpel = h->fdec->b_kept_as_ref;
int b_deblock = !h->sh.i_disable_deblocking_filter_idc;
int b_end = mb_y == h->sps->i_mb_height;
int min_y = mb_y - (1 << h->sh.b_mbaff);
int max_y = b_end ? h->sps->i_mb_height : mb_y;
b_deblock &= b_hpel || h->param.psz_dump_yuv;
if( mb_y & h->sh.b_mbaff )
return;
if( min_y < 0 )
return;
if( !b_end )
{
int i, j;
for( j=0; j<=h->sh.b_mbaff; j++ )
for( i=0; i<3; i++ )
{
memcpy( h->mb.intra_border_backup[j][i],
h->fdec->plane[i] + ((mb_y*16 >> !!i) + j - 1 - h->sh.b_mbaff) * h->fdec->i_stride[i],
h->sps->i_mb_width*16 >> !!i );
}
}
if( b_deblock )
{
int y;
for( y = min_y; y < max_y; y += (1 << h->sh.b_mbaff) )
x264_frame_deblock_row( h, y );
}
if( b_hpel )
{
x264_frame_expand_border( h, h->fdec, min_y, b_end );
if( h->param.analyse.i_subpel_refine )
{
x264_frame_filter( h, h->fdec, min_y, b_end );
x264_frame_expand_border_filtered( h, h->fdec, min_y, b_end );
}
}
if( h->param.i_threads > 1 && h->fdec->b_kept_as_ref )
{
x264_frame_cond_broadcast( h->fdec, mb_y*16 + (b_end ? 10000 : -(X264_THREAD_HEIGHT << h->sh.b_mbaff)) );
}
min_y = X264_MAX( min_y*16-8, 0 );
max_y = b_end ? h->param.i_height : mb_y*16-8;
if( h->param.analyse.b_psnr )
{
int i;
for( i=0; i<3; i++ )
h->stat.frame.i_ssd[i] +=
x264_pixel_ssd_wxh( &h->pixf,
h->fdec->plane[i] + (min_y>>!!i) * h->fdec->i_stride[i], h->fdec->i_stride[i],
h->fenc->plane[i] + (min_y>>!!i) * h->fenc->i_stride[i], h->fenc->i_stride[i],
h->param.i_width >> !!i, (max_y-min_y) >> !!i );
}
if( h->param.analyse.b_ssim )
{
x264_emms();
/* offset by 2 pixels to avoid alignment of ssim blocks with dct blocks,
* and overlap by 4 */
min_y += min_y == 0 ? 2 : -6;
h->stat.frame.f_ssim +=
x264_pixel_ssim_wxh( &h->pixf,
h->fdec->plane[0] + 2+min_y*h->fdec->i_stride[0], h->fdec->i_stride[0],
h->fenc->plane[0] + 2+min_y*h->fenc->i_stride[0], h->fenc->i_stride[0],
h->param.i_width-2, max_y-min_y );
}
}
static inline void x264_reference_update( x264_t *h )
{
int i;
if( h->fdec->i_frame >= 0 )
h->i_frame++;
if( !h->fdec->b_kept_as_ref )
{
if( h->param.i_threads > 1 )
{
x264_frame_push_unused( h, h->fdec );
h->fdec = x264_frame_pop_unused( h );
}
return;
}
/* move lowres copy of the image to the ref frame */
for( i = 0; i < 4; i++)
{
XCHG( uint8_t*, h->fdec->lowres[i], h->fenc->lowres[i] );
XCHG( uint8_t*, h->fdec->buffer_lowres[i], h->fenc->buffer_lowres[i] );
}
/* adaptive B decision needs a pointer, since it can't use the ref lists */
if( h->sh.i_type != SLICE_TYPE_B )
h->frames.last_nonb = h->fdec;
/* move frame in the buffer */
x264_frame_push( h->frames.reference, h->fdec );
if( h->frames.reference[h->frames.i_max_dpb] )
x264_frame_push_unused( h, x264_frame_shift( h->frames.reference ) );
h->fdec = x264_frame_pop_unused( h );
}
static inline void x264_reference_reset( x264_t *h )
{
while( h->frames.reference[0] )
x264_frame_push_unused( h, x264_frame_pop( h->frames.reference ) );
h->fdec->i_poc =
h->fenc->i_poc = 0;
}
static inline void x264_slice_init( x264_t *h, int i_nal_type, int i_global_qp )
{
/* ------------------------ Create slice header ----------------------- */
if( i_nal_type == NAL_SLICE_IDR )
{
x264_slice_header_init( h, &h->sh, h->sps, h->pps, h->i_idr_pic_id, h->i_frame_num, i_global_qp );
/* increment id */
h->i_idr_pic_id = ( h->i_idr_pic_id + 1 ) % 65536;
}
else
{
x264_slice_header_init( h, &h->sh, h->sps, h->pps, -1, h->i_frame_num, i_global_qp );
/* always set the real higher num of ref frame used */
h->sh.b_num_ref_idx_override = 1;
h->sh.i_num_ref_idx_l0_active = h->i_ref0 <= 0 ? 1 : h->i_ref0;
h->sh.i_num_ref_idx_l1_active = h->i_ref1 <= 0 ? 1 : h->i_ref1;
}
h->fdec->i_frame_num = h->sh.i_frame_num;
if( h->sps->i_poc_type == 0 )
{
h->sh.i_poc_lsb = h->fdec->i_poc & ( (1 << h->sps->i_log2_max_poc_lsb) - 1 );
h->sh.i_delta_poc_bottom = 0; /* XXX won't work for field */
}
else if( h->sps->i_poc_type == 1 )
{
/* FIXME TODO FIXME */
}
else
{
/* Nothing to do ? */
}
x264_macroblock_slice_init( h );
}
static void x264_slice_write( x264_t *h )
{
int i_skip;
int mb_xy, i_mb_x, i_mb_y;
int i, i_list, i_ref;
/* init stats */
memset( &h->stat.frame, 0, sizeof(h->stat.frame) );
/* Slice */
x264_nal_start( h, h->i_nal_type, h->i_nal_ref_idc );
/* Slice header */
x264_slice_header_write( &h->out.bs, &h->sh, h->i_nal_ref_idc );
if( h->param.b_cabac )
{
/* alignment needed */
bs_align_1( &h->out.bs );
/* init cabac */
x264_cabac_context_init( &h->cabac, h->sh.i_type, h->sh.i_qp, h->sh.i_cabac_init_idc );
x264_cabac_encode_init ( &h->cabac, h->out.bs.p, h->out.bs.p_end );
}
h->mb.i_last_qp = h->sh.i_qp;
h->mb.i_last_dqp = 0;
i_mb_y = h->sh.i_first_mb / h->sps->i_mb_width;
i_mb_x = h->sh.i_first_mb % h->sps->i_mb_width;
i_skip = 0;
while( (mb_xy = i_mb_x + i_mb_y * h->sps->i_mb_width) < h->sh.i_last_mb )
{
int mb_spos = bs_pos(&h->out.bs) + x264_cabac_pos(&h->cabac);
if( i_mb_x == 0 )
x264_fdec_filter_row( h, i_mb_y );
/* load cache */
x264_macroblock_cache_load( h, i_mb_x, i_mb_y );
/* analyse parameters
* Slice I: choose I_4x4 or I_16x16 mode
* Slice P: choose between using P mode or intra (4x4 or 16x16)
* */
x264_macroblock_analyse( h );
/* encode this macroblock -> be careful it can change the mb type to P_SKIP if needed */
x264_macroblock_encode( h );
x264_bitstream_check_buffer( h );
if( h->param.b_cabac )
{
if( mb_xy > h->sh.i_first_mb && !(h->sh.b_mbaff && (i_mb_y&1)) )
x264_cabac_encode_terminal( &h->cabac );
if( IS_SKIP( h->mb.i_type ) )
x264_cabac_mb_skip( h, 1 );
else
{
if( h->sh.i_type != SLICE_TYPE_I )
x264_cabac_mb_skip( h, 0 );
x264_macroblock_write_cabac( h, &h->cabac );
}
}
else
{
if( IS_SKIP( h->mb.i_type ) )
i_skip++;
else
{
if( h->sh.i_type != SLICE_TYPE_I )
{
bs_write_ue( &h->out.bs, i_skip ); /* skip run */
i_skip = 0;
}
x264_macroblock_write_cavlc( h, &h->out.bs );
}
}
#if VISUALIZE
if( h->param.b_visualize )
x264_visualize_mb( h );
#endif
/* save cache */
x264_macroblock_cache_save( h );
/* accumulate mb stats */
h->stat.frame.i_mb_count[h->mb.i_type]++;
if( !IS_SKIP(h->mb.i_type) && !IS_INTRA(h->mb.i_type) && !IS_DIRECT(h->mb.i_type) )
{
if( h->mb.i_partition != D_8x8 )
h->stat.frame.i_mb_partition[h->mb.i_partition] += 4;
else
for( i = 0; i < 4; i++ )
h->stat.frame.i_mb_partition[h->mb.i_sub_partition[i]] ++;
if( h->param.i_frame_reference > 1 )
for( i_list = 0; i_list <= (h->sh.i_type == SLICE_TYPE_B); i_list++ )
for( i = 0; i < 4; i++ )
{
i_ref = h->mb.cache.ref[i_list][ x264_scan8[4*i] ];
if( i_ref >= 0 )
h->stat.frame.i_mb_count_ref[i_list][i_ref] ++;
}
}
if( h->mb.i_cbp_luma && !IS_INTRA(h->mb.i_type) )
{
h->stat.frame.i_mb_count_8x8dct[0] ++;
h->stat.frame.i_mb_count_8x8dct[1] += h->mb.b_transform_8x8;
}
x264_ratecontrol_mb( h, bs_pos(&h->out.bs) + x264_cabac_pos(&h->cabac) - mb_spos );
if( h->sh.b_mbaff )
{
i_mb_x += i_mb_y & 1;
i_mb_y ^= i_mb_x < h->sps->i_mb_width;
}
else
i_mb_x++;
if(i_mb_x == h->sps->i_mb_width)
{
i_mb_y++;
i_mb_x = 0;
}
}
if( h->param.b_cabac )
{
x264_cabac_encode_flush( h, &h->cabac );
h->out.bs.p = h->cabac.p;
}
else
{
if( i_skip > 0 )
bs_write_ue( &h->out.bs, i_skip ); /* last skip run */
/* rbsp_slice_trailing_bits */
bs_rbsp_trailing( &h->out.bs );
}
x264_nal_end( h );
x264_fdec_filter_row( h, h->sps->i_mb_height );
/* Compute misc bits */
h->stat.frame.i_misc_bits = bs_pos( &h->out.bs )
+ NALU_OVERHEAD * 8
- h->stat.frame.i_tex_bits
- h->stat.frame.i_mv_bits;
}
static void x264_thread_sync_context( x264_t *dst, x264_t *src )
{
x264_frame_t **f;
if( dst == src )
return;
// reference counting
for( f = src->frames.reference; *f; f++ )
(*f)->i_reference_count++;
for( f = dst->frames.reference; *f; f++ )
x264_frame_push_unused( src, *f );
src->fdec->i_reference_count++;
x264_frame_push_unused( src, dst->fdec );
// copy everything except the per-thread pointers and the constants.
memcpy( &dst->i_frame, &src->i_frame, offsetof(x264_t, mb.type) - offsetof(x264_t, i_frame) );
dst->stat = src->stat;
}
static void x264_thread_sync_stat( x264_t *dst, x264_t *src )
{
if( dst == src )
return;
memcpy( &dst->stat.i_slice_count, &src->stat.i_slice_count, sizeof(dst->stat) - sizeof(dst->stat.frame) );
}
static int x264_slices_write( x264_t *h )
{
int i_frame_size;
#ifdef HAVE_MMX
/* Misalign mask has to be set separately for each thread. */
if( h->param.cpu&X264_CPU_SSE_MISALIGN )
x264_cpu_mask_misalign_sse();
#endif
#if VISUALIZE
if( h->param.b_visualize )
x264_visualize_init( h );
#endif
x264_stack_align( x264_slice_write, h );
i_frame_size = h->out.nal[h->out.i_nal-1].i_payload;
#if VISUALIZE
if( h->param.b_visualize )
{
x264_visualize_show( h );
x264_visualize_close( h );
}
#endif
h->out.i_frame_size = i_frame_size;
return 0;
}
/****************************************************************************
* x264_encoder_encode:
* XXX: i_poc : is the poc of the current given picture
* i_frame : is the number of the frame being coded
* ex: type frame poc
* I 0 2*0
* P 1 2*3
* B 2 2*1
* B 3 2*2
* P 4 2*6
* B 5 2*4
* B 6 2*5
****************************************************************************/
int x264_encoder_encode( x264_t *h,
x264_nal_t **pp_nal, int *pi_nal,
x264_picture_t *pic_in,
x264_picture_t *pic_out )
{
x264_t *thread_current, *thread_prev, *thread_oldest;
int i_nal_type;
int i_nal_ref_idc;
int i_global_qp;
if( h->param.i_threads > 1)
{
int i = ++h->i_thread_phase;
int t = h->param.i_threads;
thread_current = h->thread[ i%t ];
thread_prev = h->thread[ (i-1)%t ];
thread_oldest = h->thread[ (i+1)%t ];
x264_thread_sync_context( thread_current, thread_prev );
x264_thread_sync_ratecontrol( thread_current, thread_prev, thread_oldest );
h = thread_current;
// fprintf(stderr, "current: %p prev: %p oldest: %p \n", thread_current, thread_prev, thread_oldest);
}
else
{
thread_current =
thread_prev =
thread_oldest = h;
}
// ok to call this before encoding any frames, since the initial values of fdec have b_kept_as_ref=0
x264_reference_update( h );
h->fdec->i_lines_completed = -1;
/* no data out */
*pi_nal = 0;
*pp_nal = NULL;
/* ------------------- Setup new frame from picture -------------------- */
if( pic_in != NULL )
{
/* 1: Copy the picture to a frame and move it to a buffer */
x264_frame_t *fenc = x264_frame_pop_unused( h );
if( x264_frame_copy_picture( h, fenc, pic_in ) < 0 )
return -1;
if( h->param.i_width != 16 * h->sps->i_mb_width ||
h->param.i_height != 16 * h->sps->i_mb_height )
x264_frame_expand_border_mod16( h, fenc );
fenc->i_frame = h->frames.i_input++;
x264_frame_push( h->frames.next, fenc );
if( h->frames.b_have_lowres )
x264_frame_init_lowres( h, fenc );
if( h->param.rc.i_aq_mode )
x264_adaptive_quant_frame( h, fenc );
if( h->frames.i_input <= h->frames.i_delay + 1 - h->param.i_threads )
{
/* Nothing yet to encode */
/* waiting for filling bframe buffer */
pic_out->i_type = X264_TYPE_AUTO;
return 0;
}
}
if( h->frames.current[0] == NULL )
{
int bframes = 0;
/* 2: Select frame types */
if( h->frames.next[0] == NULL )
{
x264_encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out );
return 0;
}
x264_slicetype_decide( h );
/* 3: move some B-frames and 1 non-B to encode queue */
while( IS_X264_TYPE_B( h->frames.next[bframes]->i_type ) )
bframes++;
x264_frame_push( h->frames.current, x264_frame_shift( &h->frames.next[bframes] ) );
/* FIXME: when max B-frames > 3, BREF may no longer be centered after GOP closing */
if( h->param.b_bframe_pyramid && bframes > 1 )
{
x264_frame_t *mid = x264_frame_shift( &h->frames.next[bframes/2] );
mid->i_type = X264_TYPE_BREF;
x264_frame_push( h->frames.current, mid );
bframes--;
}
while( bframes-- )
x264_frame_push( h->frames.current, x264_frame_shift( h->frames.next ) );
}
/* ------------------- Get frame to be encoded ------------------------- */
/* 4: get picture to encode */
h->fenc = x264_frame_shift( h->frames.current );
if( h->fenc == NULL )
{
/* Nothing yet to encode (ex: waiting for I/P with B frames) */
/* waiting for filling bframe buffer */
pic_out->i_type = X264_TYPE_AUTO;
return 0;
}
do_encode:
if( h->fenc->i_type == X264_TYPE_IDR )
{
h->frames.i_last_idr = h->fenc->i_frame;
}
/* ------------------- Setup frame context ----------------------------- */
/* 5: Init data dependent of frame type */
if( h->fenc->i_type == X264_TYPE_IDR )
{
/* reset ref pictures */
x264_reference_reset( h );
i_nal_type = NAL_SLICE_IDR;
i_nal_ref_idc = NAL_PRIORITY_HIGHEST;
h->sh.i_type = SLICE_TYPE_I;
}
else if( h->fenc->i_type == X264_TYPE_I )
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/
h->sh.i_type = SLICE_TYPE_I;
}
else if( h->fenc->i_type == X264_TYPE_P )
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/
h->sh.i_type = SLICE_TYPE_P;
}
else if( h->fenc->i_type == X264_TYPE_BREF )
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = NAL_PRIORITY_HIGH; /* maybe add MMCO to forget it? -> low */
h->sh.i_type = SLICE_TYPE_B;
}
else /* B frame */
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = NAL_PRIORITY_DISPOSABLE;
h->sh.i_type = SLICE_TYPE_B;
}
h->fdec->i_poc =
h->fenc->i_poc = 2 * (h->fenc->i_frame - h->frames.i_last_idr);
h->fdec->i_type = h->fenc->i_type;
h->fdec->i_frame = h->fenc->i_frame;
h->fenc->b_kept_as_ref =
h->fdec->b_kept_as_ref = i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE && h->param.i_keyint_max > 1;
/* ------------------- Init ----------------------------- */
/* build ref list 0/1 */
x264_reference_build_list( h, h->fdec->i_poc );
/* Init the rate control */
x264_ratecontrol_start( h, h->fenc->i_qpplus1 );
i_global_qp = x264_ratecontrol_qp( h );
pic_out->i_qpplus1 =
h->fdec->i_qpplus1 = i_global_qp + 1;
if( h->sh.i_type == SLICE_TYPE_B )
x264_macroblock_bipred_init( h );
/* ------------------------ Create slice header ----------------------- */
x264_slice_init( h, i_nal_type, i_global_qp );
if( i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE )
h->i_frame_num++;
/* ---------------------- Write the bitstream -------------------------- */
/* Init bitstream context */
h->out.i_nal = 0;
bs_init( &h->out.bs, h->out.p_bitstream, h->out.i_bitstream );
if(h->param.b_aud){
int pic_type;
if(h->sh.i_type == SLICE_TYPE_I)
pic_type = 0;
else if(h->sh.i_type == SLICE_TYPE_P)
pic_type = 1;
else if(h->sh.i_type == SLICE_TYPE_B)
pic_type = 2;
else
pic_type = 7;
x264_nal_start(h, NAL_AUD, NAL_PRIORITY_DISPOSABLE);
bs_write(&h->out.bs, 3, pic_type);
bs_rbsp_trailing(&h->out.bs);
x264_nal_end(h);
}
h->i_nal_type = i_nal_type;
h->i_nal_ref_idc = i_nal_ref_idc;
/* Write SPS and PPS */
if( i_nal_type == NAL_SLICE_IDR && h->param.b_repeat_headers )
{
if( h->fenc->i_frame == 0 )
{
/* identify ourself */
x264_nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_version_write( h, &h->out.bs );
x264_nal_end( h );
}
/* generate sequence parameters */
x264_nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST );
x264_sps_write( &h->out.bs, h->sps );
x264_nal_end( h );
/* generate picture parameters */
x264_nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST );
x264_pps_write( &h->out.bs, h->pps );
x264_nal_end( h );
}
/* Write frame */
if( h->param.i_threads > 1 )
{
x264_pthread_create( &h->thread_handle, NULL, (void*)x264_slices_write, h );
h->b_thread_active = 1;
}
else
x264_slices_write( h );
/* restore CPU state (before using float again) */
x264_emms();
if( h->sh.i_type == SLICE_TYPE_P && !h->param.rc.b_stat_read
&& h->param.i_scenecut_threshold >= 0
&& !h->param.b_pre_scenecut )
{
const int *mbs = h->stat.frame.i_mb_count;
int i_mb_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4];
int i_mb_p = mbs[P_L0] + mbs[P_8x8];
int i_mb_s = mbs[P_SKIP];
int i_mb = h->sps->i_mb_width * h->sps->i_mb_height;
int64_t i_inter_cost = h->stat.frame.i_inter_cost;
int64_t i_intra_cost = h->stat.frame.i_intra_cost;
float f_bias;
int i_gop_size = h->fenc->i_frame - h->frames.i_last_idr;
float f_thresh_max = h->param.i_scenecut_threshold / 100.0;
/* magic numbers pulled out of thin air */
float f_thresh_min = f_thresh_max * h->param.i_keyint_min
/ ( h->param.i_keyint_max * 4 );
if( h->param.i_keyint_min == h->param.i_keyint_max )
f_thresh_min= f_thresh_max;
/* macroblock_analyse() doesn't further analyse skipped mbs,
* so we have to guess their cost */
if( h->stat.frame.i_mbs_analysed > 0 )
i_intra_cost = i_intra_cost * i_mb / h->stat.frame.i_mbs_analysed;
if( i_gop_size < h->param.i_keyint_min / 4 )
f_bias = f_thresh_min / 4;
else if( i_gop_size <= h->param.i_keyint_min )
f_bias = f_thresh_min * i_gop_size / h->param.i_keyint_min;
else
{
f_bias = f_thresh_min
+ ( f_thresh_max - f_thresh_min )
* ( i_gop_size - h->param.i_keyint_min )
/ ( h->param.i_keyint_max - h->param.i_keyint_min );
}
f_bias = X264_MIN( f_bias, 1.0 );
/* Bad P will be reencoded as I */
if( h->stat.frame.i_mbs_analysed > 0 &&
i_inter_cost >= (1.0 - f_bias) * i_intra_cost )
{
int b;
x264_log( h, X264_LOG_DEBUG, "scene cut at %d Icost:%.0f Pcost:%.0f ratio:%.4f bias:%.4f gop:%d (imb:%d pmb:%d smb:%d)\n",
h->fenc->i_frame,
(double)i_intra_cost, (double)i_inter_cost,
1. - (double)i_inter_cost / i_intra_cost,
f_bias, i_gop_size,
i_mb_i, i_mb_p, i_mb_s );
/* Restore frame num */
h->i_frame_num--;
for( b = 0; h->frames.current[b] && IS_X264_TYPE_B( h->frames.current[b]->i_type ); b++ );
if( b > 0 )
{
/* If using B-frames, force GOP to be closed.
* Even if this frame is going to be I and not IDR, forcing a
* P-frame before the scenecut will probably help compression.
*
* We don't yet know exactly which frame is the scene cut, so
* we can't assign an I-frame. Instead, change the previous
* B-frame to P, and rearrange coding order. */
if( h->param.i_bframe_adaptive || b > 1 )
h->fenc->i_type = X264_TYPE_AUTO;
x264_frame_sort_pts( h->frames.current );
x264_frame_unshift( h->frames.next, h->fenc );
h->fenc = h->frames.current[b-1];
h->frames.current[b-1] = NULL;
h->fenc->i_type = X264_TYPE_P;
x264_frame_sort_dts( h->frames.current );
}
/* Do IDR if needed */
else if( i_gop_size >= h->param.i_keyint_min )
{
/* Reset */
h->i_frame_num = 0;
/* Reinit field of fenc */
h->fenc->i_type = X264_TYPE_IDR;
h->fenc->i_poc = 0;
/* Put enqueued frames back in the pool */
while( h->frames.current[0] )
x264_frame_push( h->frames.next, x264_frame_shift( h->frames.current ) );
x264_frame_sort_pts( h->frames.next );
}
else
{
h->fenc->i_type = X264_TYPE_I;
}
goto do_encode;
}
}
x264_encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out );
return 0;
}
static void x264_encoder_frame_end( x264_t *h, x264_t *thread_current,
x264_nal_t **pp_nal, int *pi_nal,
x264_picture_t *pic_out )
{
int i, i_list;
char psz_message[80];
if( h->b_thread_active )
{
x264_pthread_join( h->thread_handle, NULL );
h->b_thread_active = 0;
}
if( !h->out.i_nal )
{
pic_out->i_type = X264_TYPE_AUTO;
return;
}
x264_frame_push_unused( thread_current, h->fenc );
/* End bitstream, set output */
*pi_nal = h->out.i_nal;
*pp_nal = h->out.nal;
h->out.i_nal = 0;
/* Set output picture properties */
if( h->sh.i_type == SLICE_TYPE_I )
pic_out->i_type = h->i_nal_type == NAL_SLICE_IDR ? X264_TYPE_IDR : X264_TYPE_I;
else if( h->sh.i_type == SLICE_TYPE_P )
pic_out->i_type = X264_TYPE_P;
else
pic_out->i_type = X264_TYPE_B;
pic_out->i_pts = h->fenc->i_pts;
pic_out->img.i_plane = h->fdec->i_plane;
for(i = 0; i < 4; i++){
pic_out->img.i_stride[i] = h->fdec->i_stride[i];
pic_out->img.plane[i] = h->fdec->plane[i];
}
/* ---------------------- Update encoder state ------------------------- */
/* update rc */
x264_emms();
x264_ratecontrol_end( h, h->out.i_frame_size * 8 );
/* restore CPU state (before using float again) */
x264_emms();
x264_noise_reduction_update( thread_current );
/* ---------------------- Compute/Print statistics --------------------- */
x264_thread_sync_stat( h, h->thread[0] );
/* Slice stat */
h->stat.i_slice_count[h->sh.i_type]++;
h->stat.i_slice_size[h->sh.i_type] += h->out.i_frame_size + NALU_OVERHEAD;
h->stat.f_slice_qp[h->sh.i_type] += h->fdec->f_qp_avg_aq;
for( i = 0; i < X264_MBTYPE_MAX; i++ )
h->stat.i_mb_count[h->sh.i_type][i] += h->stat.frame.i_mb_count[i];
for( i = 0; i < X264_PARTTYPE_MAX; i++ )
h->stat.i_mb_partition[h->sh.i_type][i] += h->stat.frame.i_mb_partition[i];
for( i = 0; i < 2; i++ )
h->stat.i_mb_count_8x8dct[i] += h->stat.frame.i_mb_count_8x8dct[i];
if( h->sh.i_type != SLICE_TYPE_I )
for( i_list = 0; i_list < 2; i_list++ )
for( i = 0; i < 32; i++ )
h->stat.i_mb_count_ref[h->sh.i_type][i_list][i] += h->stat.frame.i_mb_count_ref[i_list][i];
if( h->sh.i_type == SLICE_TYPE_P )
h->stat.i_consecutive_bframes[h->fdec->i_frame - h->fref0[0]->i_frame - 1]++;
if( h->sh.i_type == SLICE_TYPE_B )
{
h->stat.i_direct_frames[ h->sh.b_direct_spatial_mv_pred ] ++;
if( h->mb.b_direct_auto_write )
{
//FIXME somewhat arbitrary time constants
if( h->stat.i_direct_score[0] + h->stat.i_direct_score[1] > h->mb.i_mb_count )
{
for( i = 0; i < 2; i++ )
h->stat.i_direct_score[i] = h->stat.i_direct_score[i] * 9/10;
}
for( i = 0; i < 2; i++ )
h->stat.i_direct_score[i] += h->stat.frame.i_direct_score[i];
}
}
psz_message[0] = '\0';
if( h->param.analyse.b_psnr )
{
int64_t ssd[3] = {
h->stat.frame.i_ssd[0],
h->stat.frame.i_ssd[1],
h->stat.frame.i_ssd[2],
};
h->stat.i_ssd_global[h->sh.i_type] += ssd[0] + ssd[1] + ssd[2];
h->stat.f_psnr_average[h->sh.i_type] += x264_psnr( ssd[0] + ssd[1] + ssd[2], 3 * h->param.i_width * h->param.i_height / 2 );
h->stat.f_psnr_mean_y[h->sh.i_type] += x264_psnr( ssd[0], h->param.i_width * h->param.i_height );
h->stat.f_psnr_mean_u[h->sh.i_type] += x264_psnr( ssd[1], h->param.i_width * h->param.i_height / 4 );
h->stat.f_psnr_mean_v[h->sh.i_type] += x264_psnr( ssd[2], h->param.i_width * h->param.i_height / 4 );
snprintf( psz_message, 80, " PSNR Y:%5.2f U:%5.2f V:%5.2f",
x264_psnr( ssd[0], h->param.i_width * h->param.i_height ),
x264_psnr( ssd[1], h->param.i_width * h->param.i_height / 4),
x264_psnr( ssd[2], h->param.i_width * h->param.i_height / 4) );
}
if( h->param.analyse.b_ssim )
{
double ssim_y = h->stat.frame.f_ssim
/ (((h->param.i_width-6)>>2) * ((h->param.i_height-6)>>2));
h->stat.f_ssim_mean_y[h->sh.i_type] += ssim_y;
snprintf( psz_message + strlen(psz_message), 80 - strlen(psz_message),
" SSIM Y:%.5f", ssim_y );
}
psz_message[79] = '\0';
x264_log( h, X264_LOG_DEBUG,
"frame=%4d QP=%.2f NAL=%d Slice:%c Poc:%-3d I:%-4d P:%-4d SKIP:%-4d size=%d bytes%s\n",
h->i_frame,
h->fdec->f_qp_avg_aq,
h->i_nal_ref_idc,
h->sh.i_type == SLICE_TYPE_I ? 'I' : (h->sh.i_type == SLICE_TYPE_P ? 'P' : 'B' ),
h->fdec->i_poc,
h->stat.frame.i_mb_count_i,
h->stat.frame.i_mb_count_p,
h->stat.frame.i_mb_count_skip,
h->out.i_frame_size,
psz_message );
// keep stats all in one place
x264_thread_sync_stat( h->thread[0], h );
// for the use of the next frame
x264_thread_sync_stat( thread_current, h );
#ifdef DEBUG_MB_TYPE
{
static const char mb_chars[] = { 'i', 'i', 'I', 'C', 'P', '8', 'S',
'D', '<', 'X', 'B', 'X', '>', 'B', 'B', 'B', 'B', '8', 'S' };
int mb_xy;
for( mb_xy = 0; mb_xy < h->sps->i_mb_width * h->sps->i_mb_height; mb_xy++ )
{
if( h->mb.type[mb_xy] < X264_MBTYPE_MAX && h->mb.type[mb_xy] >= 0 )
fprintf( stderr, "%c ", mb_chars[ h->mb.type[mb_xy] ] );
else
fprintf( stderr, "? " );
if( (mb_xy+1) % h->sps->i_mb_width == 0 )
fprintf( stderr, "\n" );
}
}
#endif
if( h->param.psz_dump_yuv )
x264_frame_dump( h );
}
static void x264_print_intra( int64_t *i_mb_count, double i_count, int b_print_pcm, char *intra )
{
intra += sprintf( intra, "I16..4%s: %4.1f%% %4.1f%% %4.1f%%",
b_print_pcm ? "..PCM" : "",
i_mb_count[I_16x16]/ i_count,
i_mb_count[I_8x8] / i_count,
i_mb_count[I_4x4] / i_count );
if( b_print_pcm )
sprintf( intra, " %4.1f%%", i_mb_count[I_PCM] / i_count );
}
/****************************************************************************
* x264_encoder_close:
****************************************************************************/
void x264_encoder_close ( x264_t *h )
{
int64_t i_yuv_size = 3 * h->param.i_width * h->param.i_height / 2;
int64_t i_mb_count_size[2][7] = {{0}};
char buf[200];
int i, j, i_list, i_type;
int b_print_pcm = h->stat.i_mb_count[SLICE_TYPE_I][I_PCM]
|| h->stat.i_mb_count[SLICE_TYPE_P][I_PCM]
|| h->stat.i_mb_count[SLICE_TYPE_B][I_PCM];
for( i=0; i<h->param.i_threads; i++ )
{
// don't strictly have to wait for the other threads, but it's simpler than canceling them
if( h->thread[i]->b_thread_active )
{
x264_pthread_join( h->thread[i]->thread_handle, NULL );
assert( h->thread[i]->fenc->i_reference_count == 1 );
x264_frame_delete( h->thread[i]->fenc );
}
}
/* Slices used and PSNR */
for( i=0; i<5; i++ )
{
static const int slice_order[] = { SLICE_TYPE_I, SLICE_TYPE_SI, SLICE_TYPE_P, SLICE_TYPE_SP, SLICE_TYPE_B };
static const char *slice_name[] = { "P", "B", "I", "SP", "SI" };
int i_slice = slice_order[i];
if( h->stat.i_slice_count[i_slice] > 0 )
{
const int i_count = h->stat.i_slice_count[i_slice];
if( h->param.analyse.b_psnr )
{
x264_log( h, X264_LOG_INFO,
"slice %s:%-5d Avg QP:%5.2f size:%6.0f PSNR Mean Y:%5.2f U:%5.2f V:%5.2f Avg:%5.2f Global:%5.2f\n",
slice_name[i_slice],
i_count,
h->stat.f_slice_qp[i_slice] / i_count,
(double)h->stat.i_slice_size[i_slice] / i_count,
h->stat.f_psnr_mean_y[i_slice] / i_count, h->stat.f_psnr_mean_u[i_slice] / i_count, h->stat.f_psnr_mean_v[i_slice] / i_count,
h->stat.f_psnr_average[i_slice] / i_count,
x264_psnr( h->stat.i_ssd_global[i_slice], i_count * i_yuv_size ) );
}
else
{
x264_log( h, X264_LOG_INFO,
"slice %s:%-5d Avg QP:%5.2f size:%6.0f\n",
slice_name[i_slice],
i_count,
h->stat.f_slice_qp[i_slice] / i_count,
(double)h->stat.i_slice_size[i_slice] / i_count );
}
}
}
if( h->param.i_bframe && h->stat.i_slice_count[SLICE_TYPE_P] )
{
char *p = buf;
int den = 0;
// weight by number of frames (including the P-frame) that are in a sequence of N B-frames
for( i=0; i<=h->param.i_bframe; i++ )
den += (i+1) * h->stat.i_consecutive_bframes[i];
for( i=0; i<=h->param.i_bframe; i++ )
p += sprintf( p, " %4.1f%%", 100. * (i+1) * h->stat.i_consecutive_bframes[i] / den );
x264_log( h, X264_LOG_INFO, "consecutive B-frames:%s\n", buf );
}
for( i_type = 0; i_type < 2; i_type++ )
for( i = 0; i < X264_PARTTYPE_MAX; i++ )
{
if( i == D_DIRECT_8x8 ) continue; /* direct is counted as its own type */
i_mb_count_size[i_type][x264_mb_partition_pixel_table[i]] += h->stat.i_mb_partition[i_type][i];
}
/* MB types used */
if( h->stat.i_slice_count[SLICE_TYPE_I] > 0 )
{
int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_I];
double i_count = h->stat.i_slice_count[SLICE_TYPE_I] * h->mb.i_mb_count / 100.0;
x264_print_intra( i_mb_count, i_count, b_print_pcm, buf );
x264_log( h, X264_LOG_INFO, "mb I %s\n", buf );
}
if( h->stat.i_slice_count[SLICE_TYPE_P] > 0 )
{
int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_P];
double i_count = h->stat.i_slice_count[SLICE_TYPE_P] * h->mb.i_mb_count / 100.0;
int64_t *i_mb_size = i_mb_count_size[SLICE_TYPE_P];
x264_print_intra( i_mb_count, i_count, b_print_pcm, buf );
x264_log( h, X264_LOG_INFO,
"mb P %s P16..4: %4.1f%% %4.1f%% %4.1f%% %4.1f%% %4.1f%% skip:%4.1f%%\n",
buf,
i_mb_size[PIXEL_16x16] / (i_count*4),
(i_mb_size[PIXEL_16x8] + i_mb_size[PIXEL_8x16]) / (i_count*4),
i_mb_size[PIXEL_8x8] / (i_count*4),
(i_mb_size[PIXEL_8x4] + i_mb_size[PIXEL_4x8]) / (i_count*4),
i_mb_size[PIXEL_4x4] / (i_count*4),
i_mb_count[P_SKIP] / i_count );
}
if( h->stat.i_slice_count[SLICE_TYPE_B] > 0 )
{
int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_B];
double i_count = h->stat.i_slice_count[SLICE_TYPE_B] * h->mb.i_mb_count / 100.0;
double i_mb_list_count;
int64_t *i_mb_size = i_mb_count_size[SLICE_TYPE_B];
int64_t list_count[3] = {0}; /* 0 == L0, 1 == L1, 2 == BI */
x264_print_intra( i_mb_count, i_count, b_print_pcm, buf );
for( i = 0; i < X264_PARTTYPE_MAX; i++ )
for( j = 0; j < 2; j++ )
{
int l0 = x264_mb_type_list0_table[i][j];
int l1 = x264_mb_type_list1_table[i][j];
if( l0 || l1 )
list_count[l1+l0*l1] += h->stat.i_mb_count[SLICE_TYPE_B][i] * 2;
}
list_count[0] += h->stat.i_mb_partition[SLICE_TYPE_B][D_L0_8x8];
list_count[1] += h->stat.i_mb_partition[SLICE_TYPE_B][D_L1_8x8];
list_count[2] += h->stat.i_mb_partition[SLICE_TYPE_B][D_BI_8x8];
i_mb_count[B_DIRECT] += (h->stat.i_mb_partition[SLICE_TYPE_B][D_DIRECT_8x8]+2)/4;
i_mb_list_count = (list_count[0] + list_count[1] + list_count[2]) / 100.0;
x264_log( h, X264_LOG_INFO,
"mb B %s B16..8: %4.1f%% %4.1f%% %4.1f%% direct:%4.1f%% skip:%4.1f%% L0:%4.1f%% L1:%4.1f%% BI:%4.1f%%\n",
buf,
i_mb_size[PIXEL_16x16] / (i_count*4),
(i_mb_size[PIXEL_16x8] + i_mb_size[PIXEL_8x16]) / (i_count*4),
i_mb_size[PIXEL_8x8] / (i_count*4),
i_mb_count[B_DIRECT] / i_count,
i_mb_count[B_SKIP] / i_count,
list_count[0] / i_mb_list_count,
list_count[1] / i_mb_list_count,
list_count[2] / i_mb_list_count );
}
x264_ratecontrol_summary( h );
if( h->stat.i_slice_count[SLICE_TYPE_I] + h->stat.i_slice_count[SLICE_TYPE_P] + h->stat.i_slice_count[SLICE_TYPE_B] > 0 )
{
const int i_count = h->stat.i_slice_count[SLICE_TYPE_I] +
h->stat.i_slice_count[SLICE_TYPE_P] +
h->stat.i_slice_count[SLICE_TYPE_B];
float fps = (float) h->param.i_fps_num / h->param.i_fps_den;
#define SUM3(p) (p[SLICE_TYPE_I] + p[SLICE_TYPE_P] + p[SLICE_TYPE_B])
#define SUM3b(p,o) (p[SLICE_TYPE_I][o] + p[SLICE_TYPE_P][o] + p[SLICE_TYPE_B][o])
float f_bitrate = fps * SUM3(h->stat.i_slice_size) / i_count / 125;
if( h->pps->b_transform_8x8_mode )
{
int64_t i_i8x8 = SUM3b( h->stat.i_mb_count, I_8x8 );
int64_t i_intra = i_i8x8 + SUM3b( h->stat.i_mb_count, I_4x4 )
+ SUM3b( h->stat.i_mb_count, I_16x16 );
x264_log( h, X264_LOG_INFO, "8x8 transform intra:%.1f%% inter:%.1f%%\n",
100. * i_i8x8 / i_intra,
100. * h->stat.i_mb_count_8x8dct[1] / h->stat.i_mb_count_8x8dct[0] );
}
if( h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO
&& h->stat.i_slice_count[SLICE_TYPE_B] )
{
x264_log( h, X264_LOG_INFO, "direct mvs spatial:%.1f%% temporal:%.1f%%\n",
h->stat.i_direct_frames[1] * 100. / h->stat.i_slice_count[SLICE_TYPE_B],
h->stat.i_direct_frames[0] * 100. / h->stat.i_slice_count[SLICE_TYPE_B] );
}
for( i_list = 0; i_list < 2; i_list++ )
{
int i_slice;
for( i_slice = 0; i_slice < 2; i_slice++ )
{
char *p = buf;
int64_t i_den = 0;
int i_max = 0;
for( i = 0; i < 32; i++ )
if( h->stat.i_mb_count_ref[i_slice][i_list][i] )
{
i_den += h->stat.i_mb_count_ref[i_slice][i_list][i];
i_max = i;
}
if( i_max == 0 )
continue;
for( i = 0; i <= i_max; i++ )
p += sprintf( p, " %4.1f%%", 100. * h->stat.i_mb_count_ref[i_slice][i_list][i] / i_den );
x264_log( h, X264_LOG_INFO, "ref %c L%d %s\n", "PB"[i_slice], i_list, buf );
}
}
if( h->param.analyse.b_ssim )
{
x264_log( h, X264_LOG_INFO,
"SSIM Mean Y:%.7f\n",
SUM3( h->stat.f_ssim_mean_y ) / i_count );
}
if( h->param.analyse.b_psnr )
{
x264_log( h, X264_LOG_INFO,
"PSNR Mean Y:%6.3f U:%6.3f V:%6.3f Avg:%6.3f Global:%6.3f kb/s:%.2f\n",
SUM3( h->stat.f_psnr_mean_y ) / i_count,
SUM3( h->stat.f_psnr_mean_u ) / i_count,
SUM3( h->stat.f_psnr_mean_v ) / i_count,
SUM3( h->stat.f_psnr_average ) / i_count,
x264_psnr( SUM3( h->stat.i_ssd_global ), i_count * i_yuv_size ),
f_bitrate );
}
else
x264_log( h, X264_LOG_INFO, "kb/s:%.1f\n", f_bitrate );
}
/* rc */
x264_ratecontrol_delete( h );
/* param */
if( h->param.rc.psz_stat_out )
free( h->param.rc.psz_stat_out );
if( h->param.rc.psz_stat_in )
free( h->param.rc.psz_stat_in );
x264_cqm_delete( h );
if( h->param.i_threads > 1)
h = h->thread[ h->i_thread_phase % h->param.i_threads ];
/* frames */
for( i = 0; h->frames.current[i]; i++ )
{
assert( h->frames.current[i]->i_reference_count == 1 );
x264_frame_delete( h->frames.current[i] );
}
for( i = 0; h->frames.next[i]; i++ )
{
assert( h->frames.next[i]->i_reference_count == 1 );
x264_frame_delete( h->frames.next[i] );
}
for( i = 0; h->frames.unused[i]; i++ )
{
assert( h->frames.unused[i]->i_reference_count == 0 );
x264_frame_delete( h->frames.unused[i] );
}
h = h->thread[0];
for( i = h->param.i_threads - 1; i >= 0; i-- )
{
x264_frame_t **frame;
for( frame = h->thread[i]->frames.reference; *frame; frame++ )
{
assert( (*frame)->i_reference_count > 0 );
(*frame)->i_reference_count--;
if( (*frame)->i_reference_count == 0 )
x264_frame_delete( *frame );
}
frame = &h->thread[i]->fdec;
assert( (*frame)->i_reference_count > 0 );
(*frame)->i_reference_count--;
if( (*frame)->i_reference_count == 0 )
x264_frame_delete( *frame );
x264_macroblock_cache_end( h->thread[i] );
x264_free( h->thread[i]->out.p_bitstream );
x264_free( h->thread[i] );
}
}