blob: b24e5b6f043add2b75acb53a4da009e2e9ce7883 [file] [log] [blame]
/*****************************************************************************
* slicetype.c: h264 encoder library
*****************************************************************************
* Copyright (C) 2005-2008 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Jason Garrett-Glaser <darkshikari@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*****************************************************************************/
#include <math.h>
#include <limits.h>
#include "common/common.h"
#include "common/cpu.h"
#include "macroblock.h"
#include "me.h"
static void x264_lowres_context_init( x264_t *h, x264_mb_analysis_t *a )
{
a->i_qp = 12; // arbitrary, but low because SATD scores are 1/4 normal
a->i_lambda = x264_lambda_tab[ a->i_qp ];
x264_mb_analyse_load_costs( h, a );
h->mb.i_me_method = X264_MIN( X264_ME_HEX, h->param.analyse.i_me_method ); // maybe dia?
h->mb.i_subpel_refine = 4; // 3 should be enough, but not tweaking for speed now
h->mb.b_chroma_me = 0;
}
static int x264_slicetype_mb_cost( x264_t *h, x264_mb_analysis_t *a,
x264_frame_t **frames, int p0, int p1, int b,
int dist_scale_factor, int do_search[2] )
{
x264_frame_t *fref0 = frames[p0];
x264_frame_t *fref1 = frames[p1];
x264_frame_t *fenc = frames[b];
const int b_bidir = (b < p1);
const int i_mb_x = h->mb.i_mb_x;
const int i_mb_y = h->mb.i_mb_y;
const int i_mb_stride = h->sps->i_mb_width;
const int i_mb_xy = i_mb_x + i_mb_y * i_mb_stride;
const int i_stride = fenc->i_stride_lowres;
const int i_pel_offset = 8 * ( i_mb_x + i_mb_y * i_stride );
const int i_bipred_weight = h->param.analyse.b_weighted_bipred ? 64 - (dist_scale_factor>>2) : 32;
int16_t (*fenc_mvs[2])[2] = { &frames[b]->lowres_mvs[0][b-p0-1][i_mb_xy], &frames[b]->lowres_mvs[1][p1-b-1][i_mb_xy] };
int (*fenc_costs[2]) = { &frames[b]->lowres_mv_costs[0][b-p0-1][i_mb_xy], &frames[b]->lowres_mv_costs[1][p1-b-1][i_mb_xy] };
DECLARE_ALIGNED_8( uint8_t pix1[9*FDEC_STRIDE] );
uint8_t *pix2 = pix1+8;
x264_me_t m[2];
int i_bcost = COST_MAX;
int i_cost_bak;
int l, i;
h->mb.pic.p_fenc[0] = h->mb.pic.fenc_buf;
h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fenc[0], FENC_STRIDE, &fenc->lowres[0][i_pel_offset], i_stride, 8 );
if( !p0 && !p1 && !b )
goto lowres_intra_mb;
// no need for h->mb.mv_min[]
h->mb.mv_min_fpel[0] = -8*h->mb.i_mb_x - 4;
h->mb.mv_max_fpel[0] = 8*( h->sps->i_mb_width - h->mb.i_mb_x - 1 ) + 4;
h->mb.mv_min_spel[0] = 4*( h->mb.mv_min_fpel[0] - 8 );
h->mb.mv_max_spel[0] = 4*( h->mb.mv_max_fpel[0] + 8 );
if( h->mb.i_mb_x >= h->sps->i_mb_width - 2 )
{
h->mb.mv_min_fpel[1] = -8*h->mb.i_mb_y - 4;
h->mb.mv_max_fpel[1] = 8*( h->sps->i_mb_height - h->mb.i_mb_y - 1 ) + 4;
h->mb.mv_min_spel[1] = 4*( h->mb.mv_min_fpel[1] - 8 );
h->mb.mv_max_spel[1] = 4*( h->mb.mv_max_fpel[1] + 8 );
}
#define LOAD_HPELS_LUMA(dst, src) \
{ \
(dst)[0] = &(src)[0][i_pel_offset]; \
(dst)[1] = &(src)[1][i_pel_offset]; \
(dst)[2] = &(src)[2][i_pel_offset]; \
(dst)[3] = &(src)[3][i_pel_offset]; \
}
#define CLIP_MV( mv ) \
{ \
mv[0] = x264_clip3( mv[0], h->mb.mv_min_spel[0], h->mb.mv_max_spel[0] ); \
mv[1] = x264_clip3( mv[1], h->mb.mv_min_spel[1], h->mb.mv_max_spel[1] ); \
}
#define TRY_BIDIR( mv0, mv1, penalty ) \
{ \
int stride1 = 16, stride2 = 16; \
uint8_t *src1, *src2; \
int i_cost; \
src1 = h->mc.get_ref( pix1, &stride1, m[0].p_fref, m[0].i_stride[0], \
(mv0)[0], (mv0)[1], 8, 8 ); \
src2 = h->mc.get_ref( pix2, &stride2, m[1].p_fref, m[1].i_stride[0], \
(mv1)[0], (mv1)[1], 8, 8 ); \
h->mc.avg[PIXEL_8x8]( pix1, 16, src1, stride1, src2, stride2, i_bipred_weight ); \
i_cost = penalty + h->pixf.mbcmp[PIXEL_8x8]( \
m[0].p_fenc[0], FENC_STRIDE, pix1, 16 ); \
if( i_bcost > i_cost ) \
i_bcost = i_cost; \
}
m[0].i_pixel = PIXEL_8x8;
m[0].p_cost_mv = a->p_cost_mv;
m[0].i_stride[0] = i_stride;
m[0].p_fenc[0] = h->mb.pic.p_fenc[0];
LOAD_HPELS_LUMA( m[0].p_fref, fref0->lowres );
if( b_bidir )
{
int16_t *mvr = fref1->lowres_mvs[0][p1-p0-1][i_mb_xy];
int dmv[2][2];
int mv0[2] = {0,0};
h->mc.memcpy_aligned( &m[1], &m[0], sizeof(x264_me_t) );
LOAD_HPELS_LUMA( m[1].p_fref, fref1->lowres );
dmv[0][0] = ( mvr[0] * dist_scale_factor + 128 ) >> 8;
dmv[0][1] = ( mvr[1] * dist_scale_factor + 128 ) >> 8;
dmv[1][0] = dmv[0][0] - mvr[0];
dmv[1][1] = dmv[0][1] - mvr[1];
CLIP_MV( dmv[0] );
CLIP_MV( dmv[1] );
TRY_BIDIR( dmv[0], dmv[1], 0 );
if( dmv[0][0] | dmv[0][1] | dmv[1][0] | dmv[1][1] )
TRY_BIDIR( mv0, mv0, 0 );
// if( i_bcost < 60 ) // arbitrary threshold
// return i_bcost;
}
i_cost_bak = i_bcost;
for( l = 0; l < 1 + b_bidir; l++ )
{
DECLARE_ALIGNED_4(int16_t mvc[4][2]) = {{0}};
int i_mvc = 0;
int16_t (*fenc_mv)[2] = fenc_mvs[l];
if( do_search[l] )
{
/* Reverse-order MV prediction. */
#define MVC(mv) { *(uint32_t*)mvc[i_mvc] = *(uint32_t*)mv; i_mvc++; }
if( i_mb_x < h->sps->i_mb_width - 1 )
MVC(fenc_mv[1]);
if( i_mb_y < h->sps->i_mb_height - 1 )
{
MVC(fenc_mv[i_mb_stride]);
if( i_mb_x > 0 )
MVC(fenc_mv[i_mb_stride-1]);
if( i_mb_x < h->sps->i_mb_width - 1 )
MVC(fenc_mv[i_mb_stride+1]);
}
#undef MVC
x264_median_mv( m[l].mvp, mvc[0], mvc[1], mvc[2] );
x264_me_search( h, &m[l], mvc, i_mvc );
m[l].cost -= 2; // remove mvcost from skip mbs
if( *(uint32_t*)m[l].mv )
m[l].cost += 5;
*(uint32_t*)fenc_mvs[l] = *(uint32_t*)m[l].mv;
*fenc_costs[l] = m[l].cost;
}
else
{
*(uint32_t*)m[l].mv = *(uint32_t*)fenc_mvs[l];
m[l].cost = *fenc_costs[l];
}
i_bcost = X264_MIN( i_bcost, m[l].cost );
}
if( b_bidir && ( *(uint32_t*)m[0].mv || *(uint32_t*)m[1].mv ) )
TRY_BIDIR( m[0].mv, m[1].mv, 5 );
lowres_intra_mb:
/* forbid intra-mbs in B-frames, because it's rare and not worth checking */
/* FIXME: Should we still forbid them now that we cache intra scores? */
if( !b_bidir )
{
int i_icost, b_intra;
if( !fenc->b_intra_calculated )
{
DECLARE_ALIGNED_16( uint8_t edge[33] );
uint8_t *pix = &pix1[8+FDEC_STRIDE - 1];
uint8_t *src = &fenc->lowres[0][i_pel_offset - 1];
const int intra_penalty = 5;
int satds[4];
memcpy( pix-FDEC_STRIDE, src-i_stride, 17 );
for( i=0; i<8; i++ )
pix[i*FDEC_STRIDE] = src[i*i_stride];
pix++;
if( h->pixf.intra_satd_x3_8x8c && h->pixf.mbcmp[0] == h->pixf.satd[0] )
{
h->pixf.intra_satd_x3_8x8c( h->mb.pic.p_fenc[0], pix, satds );
h->predict_8x8c[I_PRED_CHROMA_P]( pix );
satds[I_PRED_CHROMA_P] =
h->pixf.satd[PIXEL_8x8]( pix, FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE );
}
else
{
for( i=0; i<4; i++ )
{
h->predict_8x8c[i]( pix );
satds[i] = h->pixf.mbcmp[PIXEL_8x8]( pix, FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE );
}
}
i_icost = X264_MIN4( satds[0], satds[1], satds[2], satds[3] );
x264_predict_8x8_filter( pix, edge, ALL_NEIGHBORS, ALL_NEIGHBORS );
for( i=3; i<9; i++ )
{
int satd;
h->predict_8x8[i]( pix, edge );
satd = h->pixf.mbcmp[PIXEL_8x8]( pix, FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE );
i_icost = X264_MIN( i_icost, satd );
}
i_icost += intra_penalty;
fenc->i_intra_cost[i_mb_xy] = i_icost;
}
else
i_icost = fenc->i_intra_cost[i_mb_xy];
b_intra = i_icost < i_bcost;
if( b_intra )
i_bcost = i_icost;
if( i_mb_x > 0 && i_mb_x < h->sps->i_mb_width - 1
&& i_mb_y > 0 && i_mb_y < h->sps->i_mb_height - 1 )
{
fenc->i_intra_mbs[b-p0] += b_intra;
fenc->i_cost_est[0][0] += i_icost;
}
}
return i_bcost;
}
#undef TRY_BIDIR
#define NUM_MBS\
(h->sps->i_mb_width > 2 && h->sps->i_mb_height > 2 ?\
(h->sps->i_mb_width - 2) * (h->sps->i_mb_height - 2) :\
h->sps->i_mb_width * h->sps->i_mb_height)
static int x264_slicetype_frame_cost( x264_t *h, x264_mb_analysis_t *a,
x264_frame_t **frames, int p0, int p1, int b,
int b_intra_penalty )
{
int i_score = 0;
/* Don't use the AQ'd scores for slicetype decision. */
int i_score_aq = 0;
int do_search[2];
/* Check whether we already evaluated this frame
* If we have tried this frame as P, then we have also tried
* the preceding frames as B. (is this still true?) */
/* Also check that we already calculated the row SATDs for the current frame. */
if( frames[b]->i_cost_est[b-p0][p1-b] >= 0 && (!h->param.rc.i_vbv_buffer_size || frames[b]->i_row_satds[b-p0][p1-b][0] != -1) )
{
i_score = frames[b]->i_cost_est[b-p0][p1-b];
}
else
{
int dist_scale_factor = 128;
int *row_satd = frames[b]->i_row_satds[b-p0][p1-b];
/* For each list, check to see whether we have lowres motion-searched this reference frame before. */
do_search[0] = b != p0 && frames[b]->lowres_mvs[0][b-p0-1][0][0] == 0x7FFF;
do_search[1] = b != p1 && frames[b]->lowres_mvs[1][p1-b-1][0][0] == 0x7FFF;
if( do_search[0] ) frames[b]->lowres_mvs[0][b-p0-1][0][0] = 0;
if( do_search[1] ) frames[b]->lowres_mvs[1][p1-b-1][0][0] = 0;
if( b == p1 )
{
frames[b]->i_intra_mbs[b-p0] = 0;
frames[b]->i_cost_est[0][0] = 0;
}
if( p1 != p0 )
dist_scale_factor = ( ((b-p0) << 8) + ((p1-p0) >> 1) ) / (p1-p0);
/* Lowres lookahead goes backwards because the MVs are used as predictors in the main encode. */
/* This considerably improves MV prediction overall. */
if( h->sps->i_mb_width <= 2 || h->sps->i_mb_height <= 2 )
{
for( h->mb.i_mb_y = h->sps->i_mb_height - 1; h->mb.i_mb_y >= 0 ; h->mb.i_mb_y-- )
for( h->mb.i_mb_x = h->sps->i_mb_width - 1; h->mb.i_mb_x >= 0 ; h->mb.i_mb_x-- )
i_score += x264_slicetype_mb_cost( h, a, frames, p0, p1, b, dist_scale_factor, do_search );
}
/* the edge mbs seem to reduce the predictive quality of the
* whole frame's score, but are needed for a spatial distribution. */
else if( h->param.rc.i_vbv_buffer_size )
{
for( h->mb.i_mb_y = h->sps->i_mb_height - 1; h->mb.i_mb_y >= 0; h->mb.i_mb_y-- )
{
row_satd[ h->mb.i_mb_y ] = 0;
for( h->mb.i_mb_x = h->sps->i_mb_width - 1; h->mb.i_mb_x >= 0; h->mb.i_mb_x-- )
{
int i_mb_cost = x264_slicetype_mb_cost( h, a, frames, p0, p1, b, dist_scale_factor, do_search );
int i_mb_cost_aq = i_mb_cost;
if( h->param.rc.i_aq_mode )
i_mb_cost_aq = (i_mb_cost_aq * frames[b]->i_inv_qscale_factor[h->mb.i_mb_x + h->mb.i_mb_y*h->mb.i_mb_stride] + 128) >> 8;
row_satd[ h->mb.i_mb_y ] += i_mb_cost_aq;
if( h->mb.i_mb_y > 0 && h->mb.i_mb_y < h->sps->i_mb_height - 1 &&
h->mb.i_mb_x > 0 && h->mb.i_mb_x < h->sps->i_mb_width - 1 )
{
/* Don't use AQ-weighted costs for slicetype decision, only for ratecontrol. */
i_score += i_mb_cost;
i_score_aq += i_mb_cost_aq;
}
}
}
}
else
{
for( h->mb.i_mb_y = h->sps->i_mb_height - 2; h->mb.i_mb_y > 0; h->mb.i_mb_y-- )
for( h->mb.i_mb_x = h->sps->i_mb_width - 2; h->mb.i_mb_x > 0; h->mb.i_mb_x-- )
{
int i_mb_cost = x264_slicetype_mb_cost( h, a, frames, p0, p1, b, dist_scale_factor, do_search );
int i_mb_cost_aq = i_mb_cost;
if( h->param.rc.i_aq_mode )
i_mb_cost_aq = (i_mb_cost_aq * frames[b]->i_inv_qscale_factor[h->mb.i_mb_x + h->mb.i_mb_y*h->mb.i_mb_stride] + 128) >> 8;
i_score += i_mb_cost;
i_score_aq += i_mb_cost_aq;
}
}
if( b != p1 )
i_score = i_score * 100 / (120 + h->param.i_bframe_bias);
else
frames[b]->b_intra_calculated = 1;
frames[b]->i_cost_est[b-p0][p1-b] = i_score;
frames[b]->i_cost_est_aq[b-p0][p1-b] = i_score_aq;
x264_emms();
}
if( b_intra_penalty )
{
// arbitrary penalty for I-blocks after B-frames
int nmb = NUM_MBS;
i_score += i_score * frames[b]->i_intra_mbs[b-p0] / (nmb * 8);
}
return i_score;
}
#define MAX_LENGTH (X264_BFRAME_MAX*4)
static int x264_slicetype_path_cost( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, char *path, int threshold )
{
int loc = 1;
int cost = 0;
int cur_p = 0;
path--; /* Since the 1st path element is really the second frame */
while( path[loc] )
{
int next_p = loc;
int next_b;
/* Find the location of the next P-frame. */
while( path[next_p] && path[next_p] != 'P' )
next_p++;
/* Return if the path doesn't end on a P-frame. */
if( path[next_p] != 'P' )
return cost;
/* Add the cost of the P-frame found above */
cost += x264_slicetype_frame_cost( h, a, frames, cur_p, next_p, next_p, 0 );
/* Early terminate if the cost we have found is larger than the best path cost so far */
if( cost > threshold )
break;
for( next_b = loc; next_b < next_p && cost < threshold; next_b++ )
cost += x264_slicetype_frame_cost( h, a, frames, cur_p, next_p, next_b, 0 );
loc = next_p + 1;
cur_p = next_p;
}
return cost;
}
/* Viterbi/trellis slicetype decision algorithm. */
/* Uses strings due to the fact that the speed of the control functions is
negligable compared to the cost of running slicetype_frame_cost, and because
it makes debugging easier. */
static void x264_slicetype_path( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int length, int max_bframes, int buffer_size, char (*best_paths)[MAX_LENGTH] )
{
char paths[X264_BFRAME_MAX+2][MAX_LENGTH] = {{0}};
int num_paths = X264_MIN(max_bframes+1, length);
int suffix_size, loc, path;
int best_cost = COST_MAX;
int best_path_index = 0;
length = X264_MIN(length,MAX_LENGTH);
/* Iterate over all currently possible paths and add suffixes to each one */
for( suffix_size = 0; suffix_size < num_paths; suffix_size++ )
{
memcpy( paths[suffix_size], best_paths[length - (suffix_size + 1)], length - (suffix_size + 1) );
for( loc = 0; loc < suffix_size; loc++ )
strcat( paths[suffix_size], "B" );
strcat( paths[suffix_size], "P" );
}
/* Calculate the actual cost of each of the current paths */
for( path = 0; path < num_paths; path++ )
{
int cost = x264_slicetype_path_cost( h, a, frames, paths[path], best_cost );
if( cost < best_cost )
{
best_cost = cost;
best_path_index = path;
}
}
/* Store the best path. */
memcpy( best_paths[length], paths[best_path_index], length );
}
static int x264_slicetype_path_search( x264_t *h, x264_mb_analysis_t *a, x264_frame_t **frames, int length, int bframes, int buffer )
{
char best_paths[MAX_LENGTH][MAX_LENGTH] = {"","P"};
int n;
for( n = 2; n < length-1; n++ )
x264_slicetype_path( h, a, frames, n, bframes, buffer, best_paths );
return strspn( best_paths[length-2], "B" );
}
static int scenecut( x264_t *h, x264_frame_t *frame, int pdist )
{
int icost = frame->i_cost_est[0][0];
int pcost = frame->i_cost_est[pdist][0];
float f_bias;
int i_gop_size = frame->i_frame - h->frames.i_last_idr;
float f_thresh_max = h->param.i_scenecut_threshold / 100.0;
/* magic numbers pulled out of thin air */
float f_thresh_min = f_thresh_max * h->param.i_keyint_min
/ ( h->param.i_keyint_max * 4 );
int res;
if( h->param.i_keyint_min == h->param.i_keyint_max )
f_thresh_min= f_thresh_max;
if( i_gop_size < h->param.i_keyint_min / 4 )
f_bias = f_thresh_min / 4;
else if( i_gop_size <= h->param.i_keyint_min )
f_bias = f_thresh_min * i_gop_size / h->param.i_keyint_min;
else
{
f_bias = f_thresh_min
+ ( f_thresh_max - f_thresh_min )
* ( i_gop_size - h->param.i_keyint_min )
/ ( h->param.i_keyint_max - h->param.i_keyint_min ) ;
}
res = pcost >= (1.0 - f_bias) * icost;
if( res )
{
int imb = frame->i_intra_mbs[pdist];
int pmb = NUM_MBS - imb;
x264_log( h, X264_LOG_DEBUG, "scene cut at %d Icost:%d Pcost:%d ratio:%.4f bias:%.4f gop:%d (imb:%d pmb:%d)\n",
frame->i_frame,
icost, pcost, 1. - (double)pcost / icost,
f_bias, i_gop_size, imb, pmb );
}
return res;
}
static void x264_slicetype_analyse( x264_t *h )
{
x264_mb_analysis_t a;
x264_frame_t *frames[X264_BFRAME_MAX*4+3] = { NULL, };
int num_frames;
int keyint_limit;
int j;
int i_mb_count = NUM_MBS;
int cost1p0, cost2p0, cost1b1, cost2p1;
int idr_frame_type;
assert( h->frames.b_have_lowres );
if( !h->frames.last_nonb )
return;
frames[0] = h->frames.last_nonb;
for( j = 0; h->frames.next[j]; j++ )
frames[j+1] = h->frames.next[j];
keyint_limit = h->param.i_keyint_max - frames[0]->i_frame + h->frames.i_last_idr - 1;
num_frames = X264_MIN( j, keyint_limit );
if( num_frames == 0 )
return;
x264_lowres_context_init( h, &a );
idr_frame_type = frames[1]->i_frame - h->frames.i_last_idr >= h->param.i_keyint_min ? X264_TYPE_IDR : X264_TYPE_I;
if( num_frames == 1 )
{
no_b_frames:
frames[1]->i_type = X264_TYPE_P;
if( h->param.b_pre_scenecut )
{
x264_slicetype_frame_cost( h, &a, frames, 0, 1, 1, 0 );
if( scenecut( h, frames[1], 1 ) )
frames[1]->i_type = idr_frame_type;
}
return;
}
if( h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS )
{
int num_bframes;
int max_bframes = X264_MIN(num_frames-1, h->param.i_bframe);
if( h->param.b_pre_scenecut )
{
x264_slicetype_frame_cost( h, &a, frames, 0, 1, 1, 0 );
if( scenecut( h, frames[1], 1 ) )
{
frames[1]->i_type = idr_frame_type;
return;
}
}
num_bframes = x264_slicetype_path_search( h, &a, frames, num_frames, max_bframes, num_frames-max_bframes );
assert(num_bframes < num_frames);
for( j = 1; j < num_bframes+1; j++ )
{
if( h->param.b_pre_scenecut && scenecut( h, frames[j+1], j+1 ) )
{
frames[j]->i_type = X264_TYPE_P;
frames[j+1]->i_type = idr_frame_type;
return;
}
frames[j]->i_type = X264_TYPE_B;
}
frames[num_bframes+1]->i_type = X264_TYPE_P;
}
else
{
cost2p1 = x264_slicetype_frame_cost( h, &a, frames, 0, 2, 2, 1 );
if( frames[2]->i_intra_mbs[2] > i_mb_count / 2 )
goto no_b_frames;
cost1b1 = x264_slicetype_frame_cost( h, &a, frames, 0, 2, 1, 0 );
cost1p0 = x264_slicetype_frame_cost( h, &a, frames, 0, 1, 1, 0 );
cost2p0 = x264_slicetype_frame_cost( h, &a, frames, 1, 2, 2, 0 );
if( cost1p0 + cost2p0 < cost1b1 + cost2p1 )
goto no_b_frames;
// arbitrary and untuned
#define INTER_THRESH 300
#define P_SENS_BIAS (50 - h->param.i_bframe_bias)
frames[1]->i_type = X264_TYPE_B;
for( j = 2; j <= X264_MIN( h->param.i_bframe, num_frames-1 ); j++ )
{
int pthresh = X264_MAX(INTER_THRESH - P_SENS_BIAS * (j-1), INTER_THRESH/10);
int pcost = x264_slicetype_frame_cost( h, &a, frames, 0, j+1, j+1, 1 );
if( pcost > pthresh*i_mb_count || frames[j+1]->i_intra_mbs[j+1] > i_mb_count/3 )
{
frames[j]->i_type = X264_TYPE_P;
break;
}
else
frames[j]->i_type = X264_TYPE_B;
}
}
}
void x264_slicetype_decide( x264_t *h )
{
x264_frame_t *frm;
int bframes;
int i;
if( h->frames.next[0] == NULL )
return;
if( h->param.rc.b_stat_read )
{
/* Use the frame types from the first pass */
for( i = 0; h->frames.next[i] != NULL; i++ )
h->frames.next[i]->i_type =
x264_ratecontrol_slice_type( h, h->frames.next[i]->i_frame );
}
else if( (h->param.i_bframe && h->param.i_bframe_adaptive)
|| h->param.b_pre_scenecut )
x264_slicetype_analyse( h );
for( bframes = 0;; bframes++ )
{
frm = h->frames.next[bframes];
/* Limit GOP size */
if( frm->i_frame - h->frames.i_last_idr >= h->param.i_keyint_max )
{
if( frm->i_type == X264_TYPE_AUTO )
frm->i_type = X264_TYPE_IDR;
if( frm->i_type != X264_TYPE_IDR )
x264_log( h, X264_LOG_WARNING, "specified frame type (%d) is not compatible with keyframe interval\n", frm->i_type );
}
if( frm->i_type == X264_TYPE_IDR )
{
/* Close GOP */
if( bframes > 0 )
{
bframes--;
h->frames.next[bframes]->i_type = X264_TYPE_P;
}
else
{
h->i_frame_num = 0;
}
}
if( bframes == h->param.i_bframe
|| h->frames.next[bframes+1] == NULL )
{
if( IS_X264_TYPE_B( frm->i_type ) )
x264_log( h, X264_LOG_WARNING, "specified frame type is not compatible with max B-frames\n" );
if( frm->i_type == X264_TYPE_AUTO
|| IS_X264_TYPE_B( frm->i_type ) )
frm->i_type = X264_TYPE_P;
}
if( frm->i_type != X264_TYPE_AUTO && frm->i_type != X264_TYPE_B && frm->i_type != X264_TYPE_BREF )
break;
frm->i_type = X264_TYPE_B;
}
}
int x264_rc_analyse_slice( x264_t *h )
{
x264_mb_analysis_t a;
x264_frame_t *frames[X264_BFRAME_MAX*4+2] = { NULL, };
int p0=0, p1, b;
int cost;
x264_lowres_context_init( h, &a );
if( IS_X264_TYPE_I(h->fenc->i_type) )
{
p1 = b = 0;
}
else if( X264_TYPE_P == h->fenc->i_type )
{
p1 = 0;
while( h->frames.current[p1] && IS_X264_TYPE_B( h->frames.current[p1]->i_type ) )
p1++;
p1++;
b = p1;
}
else //B
{
p1 = (h->fref1[0]->i_poc - h->fref0[0]->i_poc)/2;
b = (h->fref1[0]->i_poc - h->fenc->i_poc)/2;
frames[p1] = h->fref1[0];
}
frames[p0] = h->fref0[0];
frames[b] = h->fenc;
cost = x264_slicetype_frame_cost( h, &a, frames, p0, p1, b, 0 );
/* In AQ, use the weighted score instead. */
if( h->param.rc.i_aq_mode )
cost = frames[b]->i_cost_est[b-p0][p1-b];
h->fenc->i_row_satd = h->fenc->i_row_satds[b-p0][p1-b];
h->fdec->i_row_satd = h->fdec->i_row_satds[b-p0][p1-b];
h->fdec->i_satd = cost;
memcpy( h->fdec->i_row_satd, h->fenc->i_row_satd, h->sps->i_mb_height * sizeof(int) );
return cost;
}