blob: 2f48fccb10c65db7f6f48074f9ca3ab663094ca1 [file] [log] [blame]
/* fft/c_main.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "c_pass.h"
int
FUNCTION(gsl_fft_complex,forward) (TYPE(gsl_complex_packed_array) data,
const size_t stride,
const size_t n,
const TYPE(gsl_fft_complex_wavetable) * wavetable,
TYPE(gsl_fft_complex_workspace) * work)
{
gsl_fft_direction sign = gsl_fft_forward;
int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n,
wavetable, work, sign);
return status;
}
int
FUNCTION(gsl_fft_complex,backward) (TYPE(gsl_complex_packed_array) data,
const size_t stride,
const size_t n,
const TYPE(gsl_fft_complex_wavetable) * wavetable,
TYPE(gsl_fft_complex_workspace) * work)
{
gsl_fft_direction sign = gsl_fft_backward;
int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n,
wavetable, work, sign);
return status;
}
int
FUNCTION(gsl_fft_complex,inverse) (TYPE(gsl_complex_packed_array) data,
const size_t stride,
const size_t n,
const TYPE(gsl_fft_complex_wavetable) * wavetable,
TYPE(gsl_fft_complex_workspace) * work)
{
gsl_fft_direction sign = gsl_fft_backward;
int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n,
wavetable, work, sign);
if (status)
{
return status;
}
/* normalize inverse fft with 1/n */
{
const ATOMIC norm = ONE / (ATOMIC)n;
size_t i;
for (i = 0; i < n; i++)
{
REAL(data,stride,i) *= norm;
IMAG(data,stride,i) *= norm;
}
}
return status;
}
int
FUNCTION(gsl_fft_complex,transform) (TYPE(gsl_complex_packed_array) data,
const size_t stride,
const size_t n,
const TYPE(gsl_fft_complex_wavetable) * wavetable,
TYPE(gsl_fft_complex_workspace) * work,
const gsl_fft_direction sign)
{
const size_t nf = wavetable->nf;
size_t i;
size_t q, product = 1;
TYPE(gsl_complex) *twiddle1, *twiddle2, *twiddle3, *twiddle4,
*twiddle5, *twiddle6;
size_t state = 0;
BASE * const scratch = work->scratch;
BASE * in = data;
size_t istride = stride;
BASE * out = scratch;
size_t ostride = 1;
if (n == 0)
{
GSL_ERROR ("length n must be positive integer", GSL_EDOM);
}
if (n == 1)
{ /* FFT of 1 data point is the identity */
return 0;
}
if (n != wavetable->n)
{
GSL_ERROR ("wavetable does not match length of data", GSL_EINVAL);
}
if (n != work->n)
{
GSL_ERROR ("workspace does not match length of data", GSL_EINVAL);
}
for (i = 0; i < nf; i++)
{
const size_t factor = wavetable->factor[i];
product *= factor;
q = n / product;
if (state == 0)
{
in = data;
istride = stride;
out = scratch;
ostride = 1;
state = 1;
}
else
{
in = scratch;
istride = 1;
out = data;
ostride = stride;
state = 0;
}
if (factor == 2)
{
twiddle1 = wavetable->twiddle[i];
FUNCTION(fft_complex,pass_2) (in, istride, out, ostride, sign,
product, n, twiddle1);
}
else if (factor == 3)
{
twiddle1 = wavetable->twiddle[i];
twiddle2 = twiddle1 + q;
FUNCTION(fft_complex,pass_3) (in, istride, out, ostride, sign,
product, n, twiddle1, twiddle2);
}
else if (factor == 4)
{
twiddle1 = wavetable->twiddle[i];
twiddle2 = twiddle1 + q;
twiddle3 = twiddle2 + q;
FUNCTION(fft_complex,pass_4) (in, istride, out, ostride, sign,
product, n, twiddle1, twiddle2,
twiddle3);
}
else if (factor == 5)
{
twiddle1 = wavetable->twiddle[i];
twiddle2 = twiddle1 + q;
twiddle3 = twiddle2 + q;
twiddle4 = twiddle3 + q;
FUNCTION(fft_complex,pass_5) (in, istride, out, ostride, sign,
product, n, twiddle1, twiddle2,
twiddle3, twiddle4);
}
else if (factor == 6)
{
twiddle1 = wavetable->twiddle[i];
twiddle2 = twiddle1 + q;
twiddle3 = twiddle2 + q;
twiddle4 = twiddle3 + q;
twiddle5 = twiddle4 + q;
FUNCTION(fft_complex,pass_6) (in, istride, out, ostride, sign,
product, n, twiddle1, twiddle2,
twiddle3, twiddle4, twiddle5);
}
else if (factor == 7)
{
twiddle1 = wavetable->twiddle[i];
twiddle2 = twiddle1 + q;
twiddle3 = twiddle2 + q;
twiddle4 = twiddle3 + q;
twiddle5 = twiddle4 + q;
twiddle6 = twiddle5 + q;
FUNCTION(fft_complex,pass_7) (in, istride, out, ostride, sign,
product, n, twiddle1, twiddle2,
twiddle3, twiddle4, twiddle5,
twiddle6);
}
else
{
twiddle1 = wavetable->twiddle[i];
FUNCTION(fft_complex,pass_n) (in, istride, out, ostride, sign,
factor, product, n, twiddle1);
}
}
if (state == 1) /* copy results back from scratch to data */
{
for (i = 0; i < n; i++)
{
REAL(data,stride,i) = REAL(scratch,1,i) ;
IMAG(data,stride,i) = IMAG(scratch,1,i) ;
}
}
return 0;
}