blob: a4c0d27f51eb5e0c727ff2cb7c3a5166d9192e3e [file] [log] [blame]
/* fft/test_complex.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "bitreverse.h"
#include "signals.h"
#include "compare.h"
void FUNCTION(test_complex,func) (size_t stride, size_t n);
int FUNCTION(test,offset) (const BASE data[], size_t stride,
size_t n, size_t offset);
void FUNCTION(test_complex,bitreverse_order) (size_t stride, size_t n) ;
void FUNCTION(test_complex,radix2) (size_t stride, size_t n);
int FUNCTION(test,offset) (const BASE data[], size_t stride,
size_t n, size_t offset)
{
int status = 0 ;
size_t i, j, k = 0 ;
for (i = 0; i < n; i++)
{
k += 2 ;
for (j = 1; j < stride; j++)
{
status |= data[k] != k + offset ;
k++ ;
status |= data[k] != k + offset ;
k++ ;
}
}
return status ;
}
void FUNCTION(test_complex,func) (size_t stride, size_t n)
{
size_t i ;
int status ;
TYPE(gsl_fft_complex_wavetable) * cw ;
TYPE(gsl_fft_complex_workspace) * cwork ;
BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * fft_complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));
for (i = 0 ; i < 2 * n * stride ; i++)
{
complex_data[i] = (BASE)i ;
complex_tmp[i] = (BASE)(i + 1000.0) ;
fft_complex_data[i] = (BASE)(i + 2000.0) ;
fft_complex_tmp[i] = (BASE)(i + 3000.0) ;
}
gsl_set_error_handler (NULL); /* abort on any errors */
/* Test allocation */
{
cw = FUNCTION(gsl_fft_complex_wavetable,alloc) (n);
gsl_test (cw == 0, NAME(gsl_fft_complex_wavetable)
"_alloc, n = %d, stride = %d", n, stride);
}
{
cwork = FUNCTION(gsl_fft_complex_workspace,alloc) (n);
gsl_test (cwork == 0, NAME(gsl_fft_complex_workspace)
"_alloc, n = %d", n);
}
/* Test mixed radix fft with noise */
{
FUNCTION(fft_signal,complex_noise) (n, stride, complex_data, fft_complex_data);
for (i = 0 ; i < n ; i++)
{
REAL(complex_tmp,stride,i) = REAL(complex_data,stride,i) ;
IMAG(complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;
}
FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);
for (i = 0 ; i < n ; i++)
{
REAL(fft_complex_tmp,stride,i) = REAL(complex_data,stride,i) ;
IMAG(fft_complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;
}
status = FUNCTION(compare_complex,results) ("dft", fft_complex_data,
"fft of noise", complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_forward with signal_noise, n = %d, stride = %d", n, stride);
if (stride > 1)
{
status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;
gsl_test (status, NAME(gsl_fft_complex)
"_forward avoids unstrided data, n = %d, stride = %d",
n, stride);
}
}
/* Test the inverse fft */
{
status = FUNCTION(gsl_fft_complex,inverse) (complex_data, stride, n, cw, cwork);
status = FUNCTION(compare_complex,results) ("orig", complex_tmp,
"fft inverse", complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_inverse with signal_noise, n = %d, stride = %d", n, stride);
if (stride > 1)
{
status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;
gsl_test (status, NAME(gsl_fft_complex)
"_inverse other data untouched, n = %d, stride = %d",
n, stride);
}
}
/* Test the backward fft */
{
status = FUNCTION(gsl_fft_complex,backward) (fft_complex_tmp, stride, n, cw, cwork);
for (i = 0; i < n; i++)
{
REAL(complex_tmp,stride,i) *= n;
IMAG(complex_tmp,stride,i) *= n;
}
status = FUNCTION(compare_complex,results) ("orig",
complex_tmp,
"fft backward",
fft_complex_tmp,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_backward with signal_noise, n = %d, stride = %d", n, stride);
if (stride > 1)
{
status = FUNCTION(test, offset) (fft_complex_tmp, stride, n, 3000) ;
gsl_test (status, NAME(gsl_fft_complex)
"_backward avoids unstrided data, n = %d, stride = %d",
n, stride);
}
}
/* Test a pulse signal */
{
FUNCTION(fft_signal,complex_pulse) (1, n, stride, 1.0, 0.0, complex_data,
fft_complex_data);
FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);
status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,
"fft of pulse", complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_forward with signal_pulse, n = %d, stride = %d", n, stride);
}
/* Test a constant signal */
{
FUNCTION(fft_signal,complex_constant) (n, stride, 1.0, 0.0, complex_data,
fft_complex_data);
FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);
status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,
"fft of constant",
complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_forward with signal_constant, n = %d, stride = %d", n, stride);
}
/* Test an exponential (cos/sin) signal */
{
status = 0;
for (i = 0; i < n; i++)
{
FUNCTION(fft_signal,complex_exp) ((int)i, n, stride, 1.0, 0.0, complex_data,
fft_complex_data);
FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);
status |= FUNCTION(compare_complex,results) ("analytic",
fft_complex_data,
"fft of exp",
complex_data,
stride, n, 1e6);
}
gsl_test (status, NAME(gsl_fft_complex)
"_forward with signal_exp, n = %d, stride = %d", n, stride);
}
FUNCTION(gsl_fft_complex_wavetable,free) (cw);
FUNCTION(gsl_fft_complex_workspace,free) (cwork);
free (complex_data);
free (complex_tmp);
free (fft_complex_data);
free (fft_complex_tmp);
}
void
FUNCTION(test_complex,bitreverse_order) (size_t stride, size_t n)
{
int status ;
size_t logn, i ;
BASE * tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * data = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * reversed_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));
for (i = 0; i < 2 * stride * n; i++)
{
data[i] = (BASE)i ;
}
memcpy (tmp, data, 2 * n * stride * sizeof(BASE)) ;
logn = 0 ; while (n > (1U<<logn)) {logn++ ; } ;
/* do a naive bit reversal as a baseline for testing the other routines */
for (i = 0; i < n; i++)
{
size_t i_tmp = i ;
size_t j = 0 ;
size_t bit ;
for (bit = 0; bit < logn; bit++)
{
j <<= 1; /* reverse shift i into j */
j |= i_tmp & 1;
i_tmp >>= 1;
}
reversed_data[2*j*stride] = data[2*i*stride] ;
reversed_data[2*j*stride+1] = data[2*i*stride+1] ;
}
FUNCTION(fft_complex,bitreverse_order) (data, stride, n, logn);
status = FUNCTION(compare_complex,results) ("naive bit reverse",
reversed_data,
"fft_complex_bitreverse_order",
data,
stride, n, 1e6);
gsl_test (status, "fft_complex_bitreverse_order, n = %d", n);
free (reversed_data) ;
free (data) ;
free (tmp) ;
}
void FUNCTION(test_complex,radix2) (size_t stride, size_t n)
{
size_t i ;
int status ;
BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));
BASE * fft_complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));
for (i = 0 ; i < 2 * n * stride ; i++)
{
complex_data[i] = (BASE)i ;
complex_tmp[i] = (BASE)(i + 1000.0) ;
fft_complex_data[i] = (BASE)(i + 2000.0) ;
fft_complex_tmp[i] = (BASE)(i + 3000.0) ;
}
gsl_set_error_handler (NULL); /* abort on any errors */
/* Test radix-2 fft with noise */
{
FUNCTION(fft_signal,complex_noise) (n, stride, complex_data,
fft_complex_data);
for (i = 0 ; i < n ; i++)
{
REAL(complex_tmp,stride,i) = REAL(complex_data,stride,i) ;
IMAG(complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;
}
FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);
for (i = 0 ; i < n ; i++)
{
REAL(fft_complex_tmp,stride,i) = REAL(complex_data,stride,i) ;
IMAG(fft_complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;
}
status = FUNCTION(compare_complex,results) ("dft", fft_complex_data,
"fft of noise", complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_forward with signal_noise, n = %d, stride = %d",
n, stride);
if (stride > 1)
{
status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_forward avoids unstrided data, n = %d, stride = %d",
n, stride);
}
}
/* Test the inverse fft */
{
status = FUNCTION(gsl_fft_complex,radix2_inverse) (complex_data, stride, n);
status = FUNCTION(compare_complex,results) ("orig", complex_tmp,
"fft inverse", complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_inverse with signal_noise, n = %d, stride = %d", n, stride);
if (stride > 1)
{
status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_inverse other data untouched, n = %d, stride = %d",
n, stride);
}
}
/* Test the backward fft */
{
status = FUNCTION(gsl_fft_complex,radix2_backward) (fft_complex_tmp, stride, n);
for (i = 0; i < n; i++)
{
REAL(complex_tmp,stride,i) *= n;
IMAG(complex_tmp,stride,i) *= n;
}
status = FUNCTION(compare_complex,results) ("orig",
complex_tmp,
"fft backward",
fft_complex_tmp,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_backward with signal_noise, n = %d, stride = %d", n, stride);
if (stride > 1)
{
status = FUNCTION(test, offset) (fft_complex_tmp, stride, n, 3000) ;
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_backward avoids unstrided data, n = %d, stride = %d",
n, stride);
}
}
/* Test a pulse signal */
{
FUNCTION(fft_signal,complex_pulse) (1, n, stride, 1.0, 0.0, complex_data,
fft_complex_data);
FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);
status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,
"fft of pulse", complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_forward with signal_pulse, n = %d, stride = %d", n, stride);
}
/* Test a constant signal */
{
FUNCTION(fft_signal,complex_constant) (n, stride, 1.0, 0.0, complex_data,
fft_complex_data);
FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);
status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,
"fft of constant",
complex_data,
stride, n, 1e6);
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_forward with signal_constant, n = %d, stride = %d",
n, stride);
}
/* Test an exponential (cos/sin) signal */
{
status = 0;
for (i = 0; i < n; i++)
{
FUNCTION(fft_signal,complex_exp) ((int)i, n, stride, 1.0, 0.0, complex_data,
fft_complex_data);
FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);
status |= FUNCTION(compare_complex,results) ("analytic",
fft_complex_data,
"fft of exp",
complex_data,
stride, n, 1e6);
}
gsl_test (status, NAME(gsl_fft_complex)
"_radix2_forward with signal_exp, n = %d, stride = %d", n, stride);
}
free (complex_data);
free (complex_tmp);
free (fft_complex_data);
free (fft_complex_tmp);
}