blob: 5ad7adf4ad0bc47fe4f266aff37db115553e5dec [file] [log] [blame]
/* histogram/stat2d.c
* Copyright (C) 2002 Achim Gaedke
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/***************************************************************
*
* File histogram/stat2d.c:
* Routine to return statistical values of the content of a 2D hisogram.
*
* Contains the routines:
* gsl_histogram2d_sum sum up all bin values
* gsl_histogram2d_xmean determine mean of x values
* gsl_histogram2d_ymean determine mean of y values
*
* Author: Achim Gaedke Achim.Gaedke@zpr.uni-koeln.de
* Jan. 2002
*
***************************************************************/
#include <config.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_histogram2d.h>
/*
sum up all bins of histogram2d
*/
double
gsl_histogram2d_sum (const gsl_histogram2d * h)
{
const size_t n = h->nx * h->ny;
double sum = 0;
size_t i = 0;
while (i < n)
sum += h->bin[i++];
return sum;
}
double
gsl_histogram2d_xmean (const gsl_histogram2d * h)
{
const size_t nx = h->nx;
const size_t ny = h->ny;
size_t i;
size_t j;
/* Compute the bin-weighted arithmetic mean M of a histogram using the
recurrence relation
M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n)))
W(n) = W(n-1) + w(n)
*/
long double wmean = 0;
long double W = 0;
for (i = 0; i < nx; i++)
{
double xi = (h->xrange[i + 1] + h->xrange[i]) / 2.0;
double wi = 0;
for (j = 0; j < ny; j++)
{
double wij = h->bin[i * ny + j];
if (wij > 0)
wi += wij;
}
if (wi > 0)
{
W += wi;
wmean += (xi - wmean) * (wi / W);
}
}
return wmean;
}
double
gsl_histogram2d_ymean (const gsl_histogram2d * h)
{
const size_t nx = h->nx;
const size_t ny = h->ny;
size_t i;
size_t j;
/* Compute the bin-weighted arithmetic mean M of a histogram using the
recurrence relation
M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n)))
W(n) = W(n-1) + w(n)
*/
long double wmean = 0;
long double W = 0;
for (j = 0; j < ny; j++)
{
double yj = (h->yrange[j + 1] + h->yrange[j]) / 2.0;
double wj = 0;
for (i = 0; i < nx; i++)
{
double wij = h->bin[i * ny + j];
if (wij > 0)
wj += wij;
}
if (wj > 0)
{
W += wj;
wmean += (yj - wmean) * (wj / W);
}
}
return wmean;
}
double
gsl_histogram2d_xsigma (const gsl_histogram2d * h)
{
const double xmean = gsl_histogram2d_xmean (h);
const size_t nx = h->nx;
const size_t ny = h->ny;
size_t i;
size_t j;
/* Compute the bin-weighted arithmetic mean M of a histogram using the
recurrence relation
M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n)))
W(n) = W(n-1) + w(n)
*/
long double wvariance = 0;
long double W = 0;
for (i = 0; i < nx; i++)
{
double xi = (h->xrange[i + 1] + h->xrange[i]) / 2 - xmean;
double wi = 0;
for (j = 0; j < ny; j++)
{
double wij = h->bin[i * ny + j];
if (wij > 0)
wi += wij;
}
if (wi > 0)
{
W += wi;
wvariance += ((xi * xi) - wvariance) * (wi / W);
}
}
{
double xsigma = sqrt (wvariance);
return xsigma;
}
}
double
gsl_histogram2d_ysigma (const gsl_histogram2d * h)
{
const double ymean = gsl_histogram2d_ymean (h);
const size_t nx = h->nx;
const size_t ny = h->ny;
size_t i;
size_t j;
/* Compute the bin-weighted arithmetic mean M of a histogram using the
recurrence relation
M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n)))
W(n) = W(n-1) + w(n)
*/
long double wvariance = 0;
long double W = 0;
for (j = 0; j < ny; j++)
{
double yj = (h->yrange[j + 1] + h->yrange[j]) / 2.0 - ymean;
double wj = 0;
for (i = 0; i < nx; i++)
{
double wij = h->bin[i * ny + j];
if (wij > 0)
wj += wij;
}
if (wj > 0)
{
W += wj;
wvariance += ((yj * yj) - wvariance) * (wj / W);
}
}
{
double ysigma = sqrt (wvariance);
return ysigma;
}
}
double
gsl_histogram2d_cov (const gsl_histogram2d * h)
{
const double xmean = gsl_histogram2d_xmean (h);
const double ymean = gsl_histogram2d_ymean (h);
const size_t nx = h->nx;
const size_t ny = h->ny;
size_t i;
size_t j;
/* Compute the bin-weighted arithmetic mean M of a histogram using the
recurrence relation
M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n)))
W(n) = W(n-1) + w(n)
*/
long double wcovariance = 0;
long double W = 0;
for (j = 0; j < ny; j++)
{
for (i = 0; i < nx; i++)
{
double xi = (h->xrange[i + 1] + h->xrange[i]) / 2.0 - xmean;
double yj = (h->yrange[j + 1] + h->yrange[j]) / 2.0 - ymean;
double wij = h->bin[i * ny + j];
if (wij > 0)
{
W += wij;
wcovariance += ((xi * yj) - wcovariance) * (wij / W);
}
}
}
return wcovariance;
}