blob: 51cac049763de9d9246e53bf8f7e1e5e958f1ab6 [file] [log] [blame]
/* ieee-utils/fp-darwin86.c
*
* Copyright (C) 2006 Erik Schnetter
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_ieee_utils.h>
#include <gsl/gsl_errno.h>
/* Here is the dirty part. Set up your 387 through the control word
* (cw) register.
*
* 15-13 12 11-10 9-8 7-6 5 4 3 2 1 0
* | reserved | IC | RC | PC | reserved | PM | UM | OM | ZM | DM | IM
*
* IM: Invalid operation mask
* DM: Denormalized operand mask
* ZM: Zero-divide mask
* OM: Overflow mask
* UM: Underflow mask
* PM: Precision (inexact result) mask
*
* Mask bit is 1 means no interrupt.
*
* PC: Precision control
* 11 - round to extended precision
* 10 - round to double precision
* 00 - round to single precision
*
* RC: Rounding control
* 00 - rounding to nearest
* 01 - rounding down (toward - infinity)
* 10 - rounding up (toward + infinity)
* 11 - rounding toward zero
*
* IC: Infinity control
* That is for 8087 and 80287 only.
*
* The hardware default is 0x037f which we use.
*/
/* masking of interrupts */
#define _FPU_MASK_IM 0x01
#define _FPU_MASK_DM 0x02
#define _FPU_MASK_ZM 0x04
#define _FPU_MASK_OM 0x08
#define _FPU_MASK_UM 0x10
#define _FPU_MASK_PM 0x20
/* precision control */
#define _FPU_EXTENDED 0x300 /* libm requires double extended precision. */
#define _FPU_DOUBLE 0x200
#define _FPU_SINGLE 0x0
/* rounding control */
#define _FPU_RC_NEAREST 0x0 /* RECOMMENDED */
#define _FPU_RC_DOWN 0x400
#define _FPU_RC_UP 0x800
#define _FPU_RC_ZERO 0xC00
#define _FPU_RESERVED 0xF0C0 /* Reserved bits in cw */
/* The fdlibm code requires strict IEEE double precision arithmetic,
and no interrupts for exceptions, rounding to nearest. */
#define _FPU_DEFAULT 0x037f
/* IEEE: same as above. */
#define _FPU_IEEE 0x037f
/* Type of the control word. */
typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
/* Macros for accessing the hardware control word.
Note that the use of these macros is no sufficient anymore with
recent hardware. Some floating point operations are executed in
the SSE/SSE2 engines which have their own control and status register. */
#define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw))
#define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw))
/* Default control word set at startup. */
extern fpu_control_t __fpu_control;
#define _FPU_GETMXCSR(cw_sse) asm volatile ("stmxcsr %0" : "=m" (cw_sse))
#define _FPU_SETMXCSR(cw_sse) asm volatile ("ldmxcsr %0" : : "m" (cw_sse))
int
gsl_ieee_set_mode (int precision, int rounding, int exception_mask)
{
fpu_control_t mode, mode_sse;
_FPU_GETCW (mode) ;
mode &= _FPU_RESERVED ;
switch (precision)
{
case GSL_IEEE_SINGLE_PRECISION:
mode |= _FPU_SINGLE ;
break ;
case GSL_IEEE_DOUBLE_PRECISION:
mode |= _FPU_DOUBLE ;
break ;
case GSL_IEEE_EXTENDED_PRECISION:
mode |= _FPU_EXTENDED ;
break ;
default:
mode |= _FPU_EXTENDED ;
}
switch (rounding)
{
case GSL_IEEE_ROUND_TO_NEAREST:
mode |= _FPU_RC_NEAREST ;
break ;
case GSL_IEEE_ROUND_DOWN:
mode |= _FPU_RC_DOWN ;
break ;
case GSL_IEEE_ROUND_UP:
mode |= _FPU_RC_UP ;
break ;
case GSL_IEEE_ROUND_TO_ZERO:
mode |= _FPU_RC_ZERO ;
break ;
default:
mode |= _FPU_RC_NEAREST ;
}
if (exception_mask & GSL_IEEE_MASK_INVALID)
mode |= _FPU_MASK_IM ;
if (exception_mask & GSL_IEEE_MASK_DENORMALIZED)
mode |= _FPU_MASK_DM ;
if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO)
mode |= _FPU_MASK_ZM ;
if (exception_mask & GSL_IEEE_MASK_OVERFLOW)
mode |= _FPU_MASK_OM ;
if (exception_mask & GSL_IEEE_MASK_UNDERFLOW)
mode |= _FPU_MASK_UM ;
if (exception_mask & GSL_IEEE_TRAP_INEXACT)
{
mode &= ~ _FPU_MASK_PM ;
}
else
{
mode |= _FPU_MASK_PM ;
}
_FPU_SETCW (mode) ;
_FPU_GETMXCSR (mode_sse) ;
mode_sse &= 0xFFFF0000 ;
if (exception_mask & GSL_IEEE_MASK_INVALID)
mode_sse |= _FPU_MASK_IM << 7 ;
if (exception_mask & GSL_IEEE_MASK_DENORMALIZED)
mode_sse |= _FPU_MASK_DM << 7 ;
if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO)
mode_sse |= _FPU_MASK_ZM << 7 ;
if (exception_mask & GSL_IEEE_MASK_OVERFLOW)
mode_sse |= _FPU_MASK_OM << 7 ;
if (exception_mask & GSL_IEEE_MASK_UNDERFLOW)
mode_sse |= _FPU_MASK_UM << 7 ;
if (exception_mask & GSL_IEEE_TRAP_INEXACT)
{
mode_sse &= ~ _FPU_MASK_PM << 7 ;
}
else
{
mode_sse |= _FPU_MASK_PM << 7 ;
}
_FPU_SETMXCSR (mode_sse) ;
return GSL_SUCCESS ;
}