blob: f3ec3a4e395307558494859f6434527ccc781faf [file] [log] [blame]
/* matrix/test_source.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
void FUNCTION (test, func) (void);
void FUNCTION (test, trap) (void);
void FUNCTION (test, text) (void);
void FUNCTION (test, binary) (void);
#define TEST(expr,desc) gsl_test((expr), NAME(gsl_matrix) desc " M=%d, N=%d", M, N)
void
FUNCTION (test, func) (void)
{
TYPE (gsl_vector) * v;
size_t i, j;
size_t k = 0;
TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);
gsl_test (m->data == 0, NAME (gsl_matrix) "_alloc returns valid pointer");
gsl_test (m->size1 != M, NAME (gsl_matrix) "_alloc returns valid size1");
gsl_test (m->size2 != N, NAME (gsl_matrix) "_alloc returns valid size2");
gsl_test (m->tda != N, NAME (gsl_matrix) "_alloc returns valid tda");
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);
}
}
{
status = 0;
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
if (m->data[i * N + j] != (BASE) k)
status = 1;
};
};
gsl_test (status, NAME (gsl_matrix) "_set writes into array");
}
{
status = 0;
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
if (FUNCTION (gsl_matrix, get) (m, i, j) != (BASE) k)
status = 1;
};
};
gsl_test (status, NAME (gsl_matrix) "_get reads from array");
}
FUNCTION (gsl_matrix, free) (m); /* free whatever is in m */
m = FUNCTION (gsl_matrix, calloc) (M, N);
v = FUNCTION (gsl_vector, calloc) (N);
{
int status = (FUNCTION(gsl_matrix,isnull)(m) != 1);
TEST (status, "_isnull" DESC " on calloc matrix");
status = (FUNCTION(gsl_matrix,ispos)(m) != 0);
TEST (status, "_ispos" DESC " on calloc matrix");
status = (FUNCTION(gsl_matrix,isneg)(m) != 0);
TEST (status, "_isneg" DESC " on calloc matrix");
}
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);
}
}
{
status = 0;
k = 0;
for (i = 0; i < M; i++)
{
FUNCTION (gsl_matrix, get_row) (v, m, i);
for (j = 0; j < N; j++)
{
k++;
if (v->data[j] != (BASE) k)
status = 1;
}
}
gsl_test (status, NAME (gsl_matrix) "_get_row extracts row");
}
{
BASE exp_max = FUNCTION(gsl_matrix, get) (m, 0, 0);
BASE exp_min = FUNCTION(gsl_matrix, get) (m, 0, 0);
size_t exp_imax = 0, exp_jmax = 0, exp_imin = 0, exp_jmin = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
BASE k = FUNCTION(gsl_matrix, get) (m, i, j);
if (k > exp_max) {
exp_max = FUNCTION(gsl_matrix, get) (m, i, j);
exp_imax = i;
exp_jmax = j;
}
if (k < exp_min) {
exp_min = FUNCTION(gsl_matrix, get) (m, i, j);
exp_imin = i;
exp_jmin = j;
}
}
}
{
BASE max = FUNCTION(gsl_matrix, max) (m) ;
gsl_test (max != exp_max, NAME(gsl_matrix) "_max returns correct maximum value");
}
{
BASE min = FUNCTION(gsl_matrix, min) (m) ;
gsl_test (min != exp_min, NAME(gsl_matrix) "_min returns correct minimum value");
}
{
BASE min, max;
FUNCTION(gsl_matrix, minmax) (m, &min, &max);
gsl_test (max != exp_max, NAME(gsl_matrix) "_minmax returns correct maximum value");
gsl_test (min != exp_min, NAME(gsl_matrix) "_minmax returns correct minimum value");
}
{
size_t imax, jmax;
FUNCTION(gsl_matrix, max_index) (m, &imax, &jmax) ;
gsl_test (imax != exp_imax, NAME(gsl_matrix) "_max_index returns correct maximum i");
gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_max_index returns correct maximum j");
}
{
size_t imin, jmin;
FUNCTION(gsl_matrix, min_index) (m, &imin, &jmin) ;
gsl_test (imin != exp_imin, NAME(gsl_matrix) "_min_index returns correct minimum i");
gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_min_index returns correct minimum j");
}
{
size_t imin, jmin, imax, jmax;
FUNCTION(gsl_matrix, minmax_index) (m, &imin, &jmin, &imax, &jmax);
gsl_test (imax != exp_imax, NAME(gsl_matrix) "_minmax_index returns correct maximum i");
gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_minmax_index returns correct maximum j");
gsl_test (imin != exp_imin, NAME(gsl_matrix) "_minmax_index returns correct minimum i");
gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_minmax_index returns correct minimum j");
}
#if FP
FUNCTION(gsl_matrix,set)(m, 2, 3, GSL_NAN);
exp_min = GSL_NAN; exp_max = GSL_NAN;
exp_imin = 2; exp_jmin = 3;
exp_imax = 2; exp_jmax = 3;
{
BASE max = FUNCTION(gsl_matrix, max) (m) ;
gsl_test_abs (max,exp_max, 0, NAME(gsl_matrix) "_max returns correct maximum value for NaN");
}
{
BASE min = FUNCTION(gsl_matrix, min) (m) ;
gsl_test_abs (min, exp_min, 0, NAME(gsl_matrix) "_min returns correct minimum value for NaN");
}
{
BASE min, max;
FUNCTION(gsl_matrix, minmax) (m, &min, &max);
gsl_test_abs (max, exp_max, 0, NAME(gsl_matrix) "_minmax returns correct maximum value for NaN");
gsl_test_abs (min, exp_min, 0, NAME(gsl_matrix) "_minmax returns correct minimum value for NaN");
}
{
size_t imax, jmax;
FUNCTION(gsl_matrix, max_index) (m, &imax, &jmax) ;
gsl_test (imax != exp_imax, NAME(gsl_matrix) "_max_index returns correct maximum i for NaN");
gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_max_index returns correct maximum j for NaN");
}
{
size_t imin, jmin;
FUNCTION(gsl_matrix, min_index) (m, &imin, &jmin) ;
gsl_test (imin != exp_imin, NAME(gsl_matrix) "_min_index returns correct minimum i for NaN");
gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_min_index returns correct minimum j for NaN");
}
{
size_t imin, jmin, imax, jmax;
FUNCTION(gsl_matrix, minmax_index) (m, &imin, &jmin, &imax, &jmax);
gsl_test (imax != exp_imax, NAME(gsl_matrix) "_minmax_index returns correct maximum i for NaN");
gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_minmax_index returns correct maximum j for NaN");
gsl_test (imin != exp_imin, NAME(gsl_matrix) "_minmax_index returns correct minimum i for NaN");
gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_minmax_index returns correct minimum j for NaN");
}
#endif
}
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
FUNCTION (gsl_matrix, set) (m, i, j, (ATOMIC) 0);
}
}
{
status = (FUNCTION(gsl_matrix,isnull)(m) != 1);
TEST (status, "_isnull" DESC " on null matrix") ;
status = (FUNCTION(gsl_matrix,ispos)(m) != 0);
TEST (status, "_ispos" DESC " on null matrix") ;
status = (FUNCTION(gsl_matrix,isneg)(m) != 0);
TEST (status, "_isneg" DESC " on null matrix") ;
}
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, (ATOMIC) (k % 10));
}
}
{
status = (FUNCTION(gsl_matrix,isnull)(m) != 0);
TEST (status, "_isnull" DESC " on non-negative matrix") ;
status = (FUNCTION(gsl_matrix,ispos)(m) != 0);
TEST (status, "_ispos" DESC " on non-negative matrix") ;
status = (FUNCTION(gsl_matrix,isneg)(m) != 0);
TEST (status, "_isneg" DESC " on non-negative matrix") ;
}
#ifndef UNSIGNED
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, (ATOMIC) ((k % 10) - 5));
}
}
{
status = (FUNCTION(gsl_matrix,isnull)(m) != 0);
TEST (status, "_isnull" DESC " on mixed matrix") ;
status = (FUNCTION(gsl_matrix,ispos)(m) != 0);
TEST (status, "_ispos" DESC " on mixed matrix") ;
status = (FUNCTION(gsl_matrix,isneg)(m) != 0);
TEST (status, "_isneg" DESC " on mixed matrix") ;
}
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, -(ATOMIC) (k % 10));
}
}
{
status = (FUNCTION(gsl_matrix,isnull)(m) != 0);
TEST (status, "_isnull" DESC " on non-positive matrix") ;
status = (FUNCTION(gsl_matrix,ispos)(m) != 0);
TEST (status, "_ispos" DESC " on non-positive matrix") ;
status = (FUNCTION(gsl_matrix,isneg)(m) != 0);
TEST (status, "_isneg" DESC " on non-positive matrix") ;
}
#endif
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, (ATOMIC) (k % 10 + 1));
}
}
{
status = (FUNCTION(gsl_matrix,isnull)(m) != 0);
TEST (status, "_isnull" DESC " on positive matrix") ;
status = (FUNCTION(gsl_matrix,ispos)(m) != 1);
TEST (status, "_ispos" DESC " on positive matrix") ;
status = (FUNCTION(gsl_matrix,isneg)(m) != 0);
TEST (status, "_isneg" DESC " on positive matrix") ;
}
#if (!defined(UNSIGNED) && !defined(BASE_CHAR))
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, -(ATOMIC) (k % 10 + 1));
}
}
{
status = (FUNCTION(gsl_matrix,isnull)(m) != 0);
TEST (status, "_isnull" DESC " on negative matrix") ;
status = (FUNCTION(gsl_matrix,ispos)(m) != 0);
TEST (status, "_ispos" DESC " on negative matrix") ;
status = (FUNCTION(gsl_matrix,isneg)(m) != 1);
TEST (status, "_isneg" DESC " on negative matrix") ;
}
#endif
{
TYPE (gsl_matrix) * a = FUNCTION (gsl_matrix, calloc) (M, N);
TYPE (gsl_matrix) * b = FUNCTION (gsl_matrix, calloc) (M, N);
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
FUNCTION (gsl_matrix, set) (a, i, j, (BASE)(3 + i + 5 * j));
FUNCTION (gsl_matrix, set) (b, i, j, (BASE)(3 + 2 * i + 4 * j));
}
}
FUNCTION(gsl_matrix, memcpy) (m, a);
FUNCTION(gsl_matrix, add) (m, b);
{
int status = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
BASE r = FUNCTION(gsl_matrix,get) (m,i,j);
BASE x = FUNCTION(gsl_matrix,get) (a,i,j);
BASE y = FUNCTION(gsl_matrix,get) (b,i,j);
BASE z = x + y;
if (r != z)
status = 1;
}
}
gsl_test (status, NAME (gsl_matrix) "_add matrix addition");
}
FUNCTION(gsl_matrix, memcpy) (m, a);
FUNCTION(gsl_matrix, sub) (m, b);
{
int status = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
BASE r = FUNCTION(gsl_matrix,get) (m,i,j);
BASE x = FUNCTION(gsl_matrix,get) (a,i,j);
BASE y = FUNCTION(gsl_matrix,get) (b,i,j);
BASE z = x - y;
if (r != z)
status = 1;
}
}
gsl_test (status, NAME (gsl_matrix) "_sub matrix subtraction");
}
FUNCTION(gsl_matrix, memcpy) (m, a);
FUNCTION(gsl_matrix, mul_elements) (m, b);
{
int status = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
BASE r = FUNCTION(gsl_matrix,get) (m,i,j);
BASE x = FUNCTION(gsl_matrix,get) (a,i,j);
BASE y = FUNCTION(gsl_matrix,get) (b,i,j);
BASE z = x * y;
if (r != z)
status = 1;
}
}
gsl_test (status, NAME (gsl_matrix) "_mul_elements multiplication");
}
FUNCTION(gsl_matrix, memcpy) (m, a);
FUNCTION(gsl_matrix, div_elements) (m, b);
{
int status = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
BASE r = FUNCTION(gsl_matrix,get) (m,i,j);
BASE x = FUNCTION(gsl_matrix,get) (a,i,j);
BASE y = FUNCTION(gsl_matrix,get) (b,i,j);
BASE z = x / y;
if (fabs(r - z) > 2 * GSL_FLT_EPSILON * fabs(z))
status = 1;
}
}
gsl_test (status, NAME (gsl_matrix) "_div_elements division");
}
FUNCTION(gsl_matrix, free) (a);
FUNCTION(gsl_matrix, free) (b);
}
FUNCTION (gsl_matrix, free) (m);
FUNCTION (gsl_vector, free) (v);
}
#if !(USES_LONGDOUBLE && !HAVE_PRINTF_LONGDOUBLE)
void
FUNCTION (test, text) (void)
{
TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);
size_t i, j;
int k = 0;
{
FILE *f = fopen ("test.txt", "w");
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);
}
}
FUNCTION (gsl_matrix, fprintf) (f, m, OUT_FORMAT);
fclose (f);
}
{
FILE *f = fopen ("test.txt", "r");
TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N);
status = 0;
FUNCTION (gsl_matrix, fscanf) (f, mm);
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
if (mm->data[i * N + j] != (BASE) k)
status = 1;
}
}
gsl_test (status, NAME (gsl_matrix) "_fprintf and fscanf");
fclose (f);
FUNCTION (gsl_matrix, free) (mm);
}
FUNCTION (gsl_matrix, free) (m);
}
#endif
void
FUNCTION (test, binary) (void)
{
TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, calloc) (M, N);
size_t i, j;
size_t k = 0;
{
FILE *f = fopen ("test.dat", "wb");
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k);
}
}
FUNCTION (gsl_matrix, fwrite) (f, m);
fclose (f);
}
{
FILE *f = fopen ("test.dat", "rb");
TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N);
status = 0;
FUNCTION (gsl_matrix, fread) (f, mm);
k = 0;
for (i = 0; i < M; i++)
{
for (j = 0; j < N; j++)
{
k++;
if (mm->data[i * N + j] != (BASE) k)
status = 1;
}
}
gsl_test (status, NAME (gsl_matrix) "_write and read");
fclose (f);
FUNCTION (gsl_matrix, free) (mm);
}
FUNCTION (gsl_matrix, free) (m);
}
void
FUNCTION (test, trap) (void)
{
TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);
size_t i = 0, j = 0;
double x;
status = 0;
FUNCTION (gsl_matrix, set) (m, M + 1, 0, (BASE) 1.2);
gsl_test (!status,
NAME (gsl_matrix) "_set traps 1st index above upper bound");
status = 0;
FUNCTION (gsl_matrix, set) (m, 0, N + 1, (BASE) 1.2);
gsl_test (!status,
NAME (gsl_matrix) "_set traps 2nd index above upper bound");
status = 0;
FUNCTION (gsl_matrix, set) (m, M, 0, (BASE) 1.2);
gsl_test (!status,
NAME (gsl_matrix) "_set traps 1st index at upper bound");
status = 0;
FUNCTION (gsl_matrix, set) (m, 0, N, (BASE) 1.2);
gsl_test (!status,
NAME (gsl_matrix) "_set traps 2nd index at upper bound");
status = 0;
x = FUNCTION (gsl_matrix, get) (m, i - 1, 0);
gsl_test (!status,
NAME (gsl_matrix) "_get traps 1st index below lower bound");
gsl_test (x != 0,
NAME (gsl_matrix) "_get returns zero for 1st index below lower bound");
status = 0;
x = FUNCTION (gsl_matrix, get) (m, 0, j - 1);
gsl_test (!status,
NAME (gsl_matrix) "_get traps 2nd index below lower bound");
gsl_test (x != 0,
NAME (gsl_matrix) "_get returns zero for 2nd index below lower bound");
status = 0;
x = FUNCTION (gsl_matrix, get) (m, M + 1, 0);
gsl_test (!status,
NAME (gsl_matrix) "_get traps 1st index above upper bound");
gsl_test (x != 0,
NAME (gsl_matrix) "_get returns zero for 1st index above upper bound");
status = 0;
x = FUNCTION (gsl_matrix, get) (m, 0, N + 1);
gsl_test (!status,
NAME (gsl_matrix) "_get traps 2nd index above upper bound");
gsl_test (x != 0,
NAME (gsl_matrix) "_get returns zero for 2nd index above upper bound");
status = 0;
x = FUNCTION (gsl_matrix, get) (m, M, 0);
gsl_test (!status,
NAME (gsl_matrix) "_get traps 1st index at upper bound");
gsl_test (x != 0,
NAME (gsl_matrix) "_get returns zero for 1st index at upper bound");
status = 0;
x = FUNCTION (gsl_matrix, get) (m, 0, N);
gsl_test (!status,
NAME (gsl_matrix) "_get traps 2nd index at upper bound");
gsl_test (x != 0,
NAME (gsl_matrix) "_get returns zero for 2nd index at upper bound");
FUNCTION (gsl_matrix, free) (m);
}