blob: 6d39f292687ff0d1e40d1a9be24da126f91ca154 [file] [log] [blame]
/* multimin/vector_bfgs.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* vector_bfgs.c -- Limited memory Broyden-Fletcher-Goldfarb-Shanno method */
/* Modified by Brian Gough to use single iteration structure */
#include <config.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_blas.h>
#include "directional_minimize.c"
typedef struct
{
int iter;
double step;
double max_step;
double tol;
gsl_vector *x1;
gsl_vector *dx1;
gsl_vector *x2;
double g0norm;
double pnorm;
gsl_vector *p;
gsl_vector *x0;
gsl_vector *g0;
gsl_vector *dx0;
gsl_vector *dg0;
}
vector_bfgs_state_t;
static int
vector_bfgs_alloc (void *vstate, size_t n)
{
vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate;
state->x1 = gsl_vector_calloc (n);
if (state->x1 == 0)
{
GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM);
}
state->dx1 = gsl_vector_calloc (n);
if (state->dx1 == 0)
{
gsl_vector_free (state->x1);
GSL_ERROR ("failed to allocate space for dx1", GSL_ENOMEM);
}
state->x2 = gsl_vector_calloc (n);
if (state->x2 == 0)
{
gsl_vector_free (state->dx1);
gsl_vector_free (state->x1);
GSL_ERROR ("failed to allocate space for x2", GSL_ENOMEM);
}
state->p = gsl_vector_calloc (n);
if (state->p == 0)
{
gsl_vector_free (state->x2);
gsl_vector_free (state->dx1);
gsl_vector_free (state->x1);
GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM);
}
state->x0 = gsl_vector_calloc (n);
if (state->x0 == 0)
{
gsl_vector_free (state->p);
gsl_vector_free (state->x2);
gsl_vector_free (state->dx1);
gsl_vector_free (state->x1);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->g0 = gsl_vector_calloc (n);
if (state->g0 == 0)
{
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
gsl_vector_free (state->x2);
gsl_vector_free (state->dx1);
gsl_vector_free (state->x1);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->dx0 = gsl_vector_calloc (n);
if (state->dx0 == 0)
{
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
gsl_vector_free (state->x2);
gsl_vector_free (state->dx1);
gsl_vector_free (state->x1);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->dg0 = gsl_vector_calloc (n);
if (state->dg0 == 0)
{
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
gsl_vector_free (state->x2);
gsl_vector_free (state->dx1);
gsl_vector_free (state->x1);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
return GSL_SUCCESS;
}
static int
vector_bfgs_set (void *vstate, gsl_multimin_function_fdf * fdf,
const gsl_vector * x, double *f, gsl_vector * gradient,
double step_size, double tol)
{
vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate;
state->iter = 0;
state->step = step_size;
state->max_step = step_size;
state->tol = tol;
GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient);
/* Use the gradient as the initial direction */
gsl_vector_memcpy (state->x0, x);
gsl_vector_memcpy (state->p, gradient);
gsl_vector_memcpy (state->g0, gradient);
{
double gnorm = gsl_blas_dnrm2 (gradient);
state->pnorm = gnorm;
state->g0norm = gnorm;
}
return GSL_SUCCESS;
}
static void
vector_bfgs_free (void *vstate)
{
vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate;
gsl_vector_free (state->dg0);
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
gsl_vector_free (state->x2);
gsl_vector_free (state->dx1);
gsl_vector_free (state->x1);
}
static int
vector_bfgs_restart (void *vstate)
{
vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate;
state->iter = 0;
return GSL_SUCCESS;
}
static int
vector_bfgs_iterate (void *vstate, gsl_multimin_function_fdf * fdf,
gsl_vector * x, double *f,
gsl_vector * gradient, gsl_vector * dx)
{
vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate;
gsl_vector *x1 = state->x1;
gsl_vector *dx1 = state->dx1;
gsl_vector *x2 = state->x2;
gsl_vector *p = state->p;
gsl_vector *g0 = state->g0;
gsl_vector *x0 = state->x0;
double pnorm = state->pnorm;
double g0norm = state->g0norm;
double fa = *f, fb, fc;
double dir;
double stepa = 0.0, stepb, stepc = state->step, tol = state->tol;
double g1norm;
double pg;
if (pnorm == 0.0 || g0norm == 0.0)
{
gsl_vector_set_zero (dx);
return GSL_ENOPROG;
}
/* Determine which direction is downhill, +p or -p */
gsl_blas_ddot (p, gradient, &pg);
dir = (pg >= 0.0) ? +1.0 : -1.0;
/* Compute new trial point at x_c= x - step * p, where p is the
current direction */
take_step (x, p, stepc, dir / pnorm, x1, dx);
/* Evaluate function and gradient at new point xc */
fc = GSL_MULTIMIN_FN_EVAL_F (fdf, x1);
if (fc < fa)
{
/* Success, reduced the function value */
state->step = stepc * 2.0;
*f = fc;
gsl_vector_memcpy (x, x1);
GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient);
return GSL_SUCCESS;
}
#ifdef DEBUG
printf ("got stepc = %g fc = %g\n", stepc, fc);
#endif
/* Do a line minimisation in the region (xa,fa) (xc,fc) to find an
intermediate (xb,fb) satisifying fa > fb < fc. Choose an initial
xb based on parabolic interpolation */
intermediate_point (fdf, x, p, dir / pnorm, pg,
stepa, stepc, fa, fc, x1, dx1, gradient, &stepb, &fb);
if (stepb == 0.0)
{
return GSL_ENOPROG;
}
minimize (fdf, x, p, dir / pnorm,
stepa, stepb, stepc, fa, fb, fc, tol,
x1, dx1, x2, dx, gradient, &(state->step), f, &g1norm);
gsl_vector_memcpy (x, x2);
/* Choose a new direction for the next step */
state->iter = (state->iter + 1) % x->size;
if (state->iter == 0)
{
gsl_vector_memcpy (p, gradient);
state->pnorm = g1norm;
}
else
{
/* This is the BFGS update: */
/* p' = g1 - A dx - B dg */
/* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */
/* B = dx.g/dx.dg */
gsl_vector *dx0 = state->dx0;
gsl_vector *dg0 = state->dg0;
double dxg, dgg, dxdg, dgnorm, A, B;
/* dx0 = x - x0 */
gsl_vector_memcpy (dx0, x);
gsl_blas_daxpy (-1.0, x0, dx0);
/* dg0 = g - g0 */
gsl_vector_memcpy (dg0, gradient);
gsl_blas_daxpy (-1.0, g0, dg0);
gsl_blas_ddot (dx0, gradient, &dxg);
gsl_blas_ddot (dg0, gradient, &dgg);
gsl_blas_ddot (dx0, dg0, &dxdg);
dgnorm = gsl_blas_dnrm2 (dg0);
if (dxdg != 0)
{
B = dxg / dxdg;
A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg;
}
else
{
B = 0;
A = 0;
}
gsl_vector_memcpy (p, gradient);
gsl_blas_daxpy (-A, dx0, p);
gsl_blas_daxpy (-B, dg0, p);
state->pnorm = gsl_blas_dnrm2 (p);
}
gsl_vector_memcpy (g0, gradient);
gsl_vector_memcpy (x0, x);
state->g0norm = gsl_blas_dnrm2 (g0);
#ifdef DEBUG
printf ("updated directions\n");
printf ("p: ");
gsl_vector_fprintf (stdout, p, "%g");
printf ("g: ");
gsl_vector_fprintf (stdout, gradient, "%g");
#endif
return GSL_SUCCESS;
}
static const gsl_multimin_fdfminimizer_type vector_bfgs_type = {
"vector_bfgs", /* name */
sizeof (vector_bfgs_state_t),
&vector_bfgs_alloc,
&vector_bfgs_set,
&vector_bfgs_iterate,
&vector_bfgs_restart,
&vector_bfgs_free
};
const gsl_multimin_fdfminimizer_type
* gsl_multimin_fdfminimizer_vector_bfgs = &vector_bfgs_type;