blob: d4f5cb3d6ca676305a6b520fe327d4709459f232 [file] [log] [blame]
/* multimin/vector_bfgs2.c
*
* Copyright (C) 2007 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/* vector_bfgs2.c -- Fletcher's implementation of the BFGS method,
from R.Fletcher, "Practical Method's of Optimization", Second
Edition, ISBN 0471915475. Algorithms 2.6.2 and 2.6.4. */
/* Thanks to Alan Irwin irwin@beluga.phys.uvic.ca. for suggesting this
algorithm and providing sample fortran benchmarks */
#include <config.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_blas.h>
#include "linear_minimize.c"
#include "linear_wrapper.c"
typedef struct
{
int iter;
double step;
double g0norm;
double pnorm;
double delta_f;
double fp0; /* f'(0) for f(x-alpha*p) */
gsl_vector *x0;
gsl_vector *g0;
gsl_vector *p;
/* work space */
gsl_vector *dx0;
gsl_vector *dg0;
gsl_vector *x_alpha;
gsl_vector *g_alpha;
/* wrapper function */
wrapper_t wrap;
/* minimization parameters */
double rho;
double sigma;
double tau1;
double tau2;
double tau3;
int order;
}
vector_bfgs2_state_t;
static int
vector_bfgs2_alloc (void *vstate, size_t n)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
state->p = gsl_vector_calloc (n);
if (state->p == 0)
{
GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM);
}
state->x0 = gsl_vector_calloc (n);
if (state->x0 == 0)
{
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->g0 = gsl_vector_calloc (n);
if (state->g0 == 0)
{
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->dx0 = gsl_vector_calloc (n);
if (state->dx0 == 0)
{
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->dg0 = gsl_vector_calloc (n);
if (state->dg0 == 0)
{
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->x_alpha = gsl_vector_calloc (n);
if (state->x_alpha == 0)
{
gsl_vector_free (state->dg0);
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
state->g_alpha = gsl_vector_calloc (n);
if (state->g_alpha == 0)
{
gsl_vector_free (state->x_alpha);
gsl_vector_free (state->dg0);
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM);
}
return GSL_SUCCESS;
}
static int
vector_bfgs2_set (void *vstate, gsl_multimin_function_fdf * fdf,
const gsl_vector * x, double *f, gsl_vector * gradient,
double step_size, double tol)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
state->iter = 0;
state->step = step_size;
state->delta_f = 0;
GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient);
/* Use the gradient as the initial direction */
gsl_vector_memcpy (state->x0, x);
gsl_vector_memcpy (state->g0, gradient);
state->g0norm = gsl_blas_dnrm2 (state->g0);
gsl_vector_memcpy (state->p, gradient);
gsl_blas_dscal (-1 / state->g0norm, state->p);
state->pnorm = gsl_blas_dnrm2 (state->p); /* should be 1 */
state->fp0 = -state->g0norm;
/* Prepare the wrapper */
prepare_wrapper (&state->wrap, fdf,
state->x0, *f, state->g0,
state->p, state->x_alpha, state->g_alpha);
/* Prepare 1d minimisation parameters */
state->rho = 0.01;
state->sigma = tol;
state->tau1 = 9;
state->tau2 = 0.05;
state->tau3 = 0.5;
state->order = 3; /* use cubic interpolation where possible */
return GSL_SUCCESS;
}
static void
vector_bfgs2_free (void *vstate)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
gsl_vector_free (state->x_alpha);
gsl_vector_free (state->g_alpha);
gsl_vector_free (state->dg0);
gsl_vector_free (state->dx0);
gsl_vector_free (state->g0);
gsl_vector_free (state->x0);
gsl_vector_free (state->p);
}
static int
vector_bfgs2_restart (void *vstate)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
state->iter = 0;
return GSL_SUCCESS;
}
static int
vector_bfgs2_iterate (void *vstate, gsl_multimin_function_fdf * fdf,
gsl_vector * x, double *f,
gsl_vector * gradient, gsl_vector * dx)
{
vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate;
double alpha = 0.0, alpha1;
gsl_vector *x0 = state->x0;
gsl_vector *g0 = state->g0;
gsl_vector *p = state->p;
double g0norm = state->g0norm;
double pnorm = state->pnorm;
double delta_f = state->delta_f;
double pg, dir;
int status;
double f0 = *f;
if (pnorm == 0.0 || g0norm == 0.0 || state->fp0 == 0)
{
gsl_vector_set_zero (dx);
return GSL_ENOPROG;
}
if (delta_f < 0)
{
double del = GSL_MAX_DBL (-delta_f, 10 * GSL_DBL_EPSILON * fabs(f0));
alpha1 = GSL_MIN_DBL (1.0, 2.0 * del / (-state->fp0));
}
else
{
alpha1 = fabs(state->step);
}
/* line minimisation, with cubic interpolation (order = 3) */
status = minimize (&state->wrap.fdf_linear, state->rho, state->sigma,
state->tau1, state->tau2, state->tau3, state->order,
alpha1, &alpha);
if (status != GSL_SUCCESS)
{
return status;
}
update_position (&(state->wrap), alpha, x, f, gradient);
state->delta_f = *f - f0;
/* Choose a new direction for the next step */
{
/* This is the BFGS update: */
/* p' = g1 - A dx - B dg */
/* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */
/* B = dx.g/dx.dg */
gsl_vector *dx0 = state->dx0;
gsl_vector *dg0 = state->dg0;
double dxg, dgg, dxdg, dgnorm, A, B;
/* dx0 = x - x0 */
gsl_vector_memcpy (dx0, x);
gsl_blas_daxpy (-1.0, x0, dx0);
gsl_vector_memcpy (dx, dx0); /* keep a copy */
/* dg0 = g - g0 */
gsl_vector_memcpy (dg0, gradient);
gsl_blas_daxpy (-1.0, g0, dg0);
gsl_blas_ddot (dx0, gradient, &dxg);
gsl_blas_ddot (dg0, gradient, &dgg);
gsl_blas_ddot (dx0, dg0, &dxdg);
dgnorm = gsl_blas_dnrm2 (dg0);
if (dxdg != 0)
{
B = dxg / dxdg;
A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg;
}
else
{
B = 0;
A = 0;
}
gsl_vector_memcpy (p, gradient);
gsl_blas_daxpy (-A, dx0, p);
gsl_blas_daxpy (-B, dg0, p);
}
gsl_vector_memcpy (g0, gradient);
gsl_vector_memcpy (x0, x);
state->g0norm = gsl_blas_dnrm2 (g0);
state->pnorm = gsl_blas_dnrm2 (p);
/* update direction and fp0 */
gsl_blas_ddot (p, gradient, &pg);
dir = (pg >= 0.0) ? -1.0 : +1.0;
gsl_blas_dscal (dir / state->pnorm, p);
state->pnorm = gsl_blas_dnrm2 (p);
gsl_blas_ddot (p, g0, &state->fp0);
change_direction (&state->wrap);
return GSL_SUCCESS;
}
static const gsl_multimin_fdfminimizer_type vector_bfgs2_type = {
"vector_bfgs2", /* name */
sizeof (vector_bfgs2_state_t),
&vector_bfgs2_alloc,
&vector_bfgs2_set,
&vector_bfgs2_iterate,
&vector_bfgs2_restart,
&vector_bfgs2_free
};
const gsl_multimin_fdfminimizer_type
* gsl_multimin_fdfminimizer_vector_bfgs2 = &vector_bfgs2_type;