blob: 029f2b733f37e5e00d141b3aae3380e3b3960257 [file] [log] [blame]
/* multiroots/test.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_multiroots.h>
#include <gsl/gsl_ieee_utils.h>
#include "test_funcs.h"
int test_fdf (const char * desc, gsl_multiroot_function_fdf * function, initpt_function initpt, double factor, const gsl_multiroot_fdfsolver_type * T);
int test_f (const char * desc, gsl_multiroot_function_fdf * fdf, initpt_function initpt, double factor, const gsl_multiroot_fsolver_type * T);
int
main (void)
{
const gsl_multiroot_fsolver_type * fsolvers[5] ;
const gsl_multiroot_fsolver_type ** T1 ;
const gsl_multiroot_fdfsolver_type * fdfsolvers[5] ;
const gsl_multiroot_fdfsolver_type ** T2 ;
double f;
fsolvers[0] = gsl_multiroot_fsolver_dnewton;
fsolvers[1] = gsl_multiroot_fsolver_broyden;
fsolvers[2] = gsl_multiroot_fsolver_hybrid;
fsolvers[3] = gsl_multiroot_fsolver_hybrids;
fsolvers[4] = 0;
fdfsolvers[0] = gsl_multiroot_fdfsolver_newton;
fdfsolvers[1] = gsl_multiroot_fdfsolver_gnewton;
fdfsolvers[2] = gsl_multiroot_fdfsolver_hybridj;
fdfsolvers[3] = gsl_multiroot_fdfsolver_hybridsj;
fdfsolvers[4] = 0;
gsl_ieee_env_setup();
f = 1.0 ;
T1 = fsolvers ;
while (*T1 != 0)
{
test_f ("Rosenbrock", &rosenbrock, rosenbrock_initpt, f, *T1);
test_f ("Roth", &roth, roth_initpt, f, *T1);
test_f ("Powell badly scaled", &powellscal, powellscal_initpt, f, *T1);
test_f ("Brown badly scaled", &brownscal, brownscal_initpt, f, *T1);
test_f ("Powell singular", &powellsing, powellsing_initpt, f, *T1);
test_f ("Wood", &wood, wood_initpt, f, *T1);
test_f ("Helical", &helical, helical_initpt, f, *T1);
test_f ("Discrete BVP", &dbv, dbv_initpt, f, *T1);
test_f ("Trig", &trig, trig_initpt, f, *T1);
T1++;
}
T2 = fdfsolvers ;
while (*T2 != 0)
{
test_fdf ("Rosenbrock", &rosenbrock, rosenbrock_initpt, f, *T2);
test_fdf ("Roth", &roth, roth_initpt, f, *T2);
test_fdf ("Powell badly scaled", &powellscal, powellscal_initpt, f, *T2);
test_fdf ("Brown badly scaled", &brownscal, brownscal_initpt, f, *T2);
test_fdf ("Powell singular", &powellsing, powellsing_initpt, f, *T2);
test_fdf ("Wood", &wood, wood_initpt, f, *T2);
test_fdf ("Helical", &helical, helical_initpt, f, *T2);
test_fdf ("Discrete BVP", &dbv, dbv_initpt, f, *T2);
test_fdf ("Trig", &trig, trig_initpt, f, *T2);
T2++;
}
exit (gsl_test_summary ());
}
void scale (gsl_vector * x, double factor);
void
scale (gsl_vector * x, double factor)
{
size_t i, n = x->size;
if (gsl_vector_isnull(x))
{
for (i = 0; i < n; i++)
{
gsl_vector_set (x, i, factor);
}
}
else
{
for (i = 0; i < n; i++)
{
double xi = gsl_vector_get(x, i);
gsl_vector_set(x, i, factor * xi);
}
}
}
int
test_fdf (const char * desc, gsl_multiroot_function_fdf * function,
initpt_function initpt, double factor,
const gsl_multiroot_fdfsolver_type * T)
{
int status;
double residual = 0;
size_t i, n = function->n, iter = 0;
gsl_vector *x = gsl_vector_alloc (n);
gsl_matrix *J = gsl_matrix_alloc (n, n);
gsl_multiroot_fdfsolver *s;
(*initpt) (x);
if (factor != 1.0) scale(x, factor);
s = gsl_multiroot_fdfsolver_alloc (T, n);
gsl_multiroot_fdfsolver_set (s, function, x);
do
{
iter++;
status = gsl_multiroot_fdfsolver_iterate (s);
if (status)
break ;
status = gsl_multiroot_test_residual (s->f, 0.0000001);
}
while (status == GSL_CONTINUE && iter < 1000);
#ifdef DEBUG
printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("\n");
printf("f "); gsl_vector_fprintf (stdout, s->f, "%g"); printf("\n");
#endif
#ifdef TEST_JACOBIAN
{
double r,sum; size_t j;
gsl_multiroot_function f1 ;
f1.f = function->f ;
f1.n = function->n ;
f1.params = function->params ;
gsl_multiroot_fdjacobian (&f1, s->x, s->f, GSL_SQRT_DBL_EPSILON, J);
/* compare J and s->J */
r=0;sum=0;
for (i = 0; i < n; i++)
for (j = 0; j< n ; j++)
{
double u = gsl_matrix_get(J,i,j);
double su = gsl_matrix_get(s->J, i, j);
r = fabs(u - su)/(1e-6 + 1e-6 * fabs(u)); sum+=r;
if (fabs(u - su) > 1e-6 + 1e-6 * fabs(u))
printf("broken jacobian %g\n", r);
}
printf("avg r = %g\n", sum/(n*n));
}
#endif
for (i = 0; i < n ; i++)
{
residual += fabs(gsl_vector_get(s->f, i));
}
gsl_multiroot_fdfsolver_free (s);
gsl_matrix_free(J);
gsl_vector_free(x);
gsl_test(status, "%s on %s (%g), %u iterations, residual = %.2g", T->name, desc, factor, iter, residual);
return status;
}
int
test_f (const char * desc, gsl_multiroot_function_fdf * fdf,
initpt_function initpt, double factor,
const gsl_multiroot_fsolver_type * T)
{
int status;
size_t i, n = fdf->n, iter = 0;
double residual = 0;
gsl_vector *x;
gsl_multiroot_fsolver *s;
gsl_multiroot_function function;
function.f = fdf->f;
function.params = fdf->params;
function.n = n ;
x = gsl_vector_alloc (n);
(*initpt) (x);
if (factor != 1.0) scale(x, factor);
s = gsl_multiroot_fsolver_alloc (T, n);
gsl_multiroot_fsolver_set (s, &function, x);
/* printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("\n"); */
/* printf("f "); gsl_vector_fprintf (stdout, s->f, "%g"); printf("\n"); */
do
{
iter++;
status = gsl_multiroot_fsolver_iterate (s);
if (status)
break ;
status = gsl_multiroot_test_residual (s->f, 0.0000001);
}
while (status == GSL_CONTINUE && iter < 1000);
#ifdef DEBUG
printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("\n");
printf("f "); gsl_vector_fprintf (stdout, s->f, "%g"); printf("\n");
#endif
for (i = 0; i < n ; i++)
{
residual += fabs(gsl_vector_get(s->f, i));
}
gsl_multiroot_fsolver_free (s);
gsl_vector_free(x);
gsl_test(status, "%s on %s (%g), %u iterations, residual = %.2g", T->name, desc, factor, iter, residual);
return status;
}