blob: b8fa713c8d7da96d7dc9b118678836be08e18c92 [file] [log] [blame]
/* specfunc/gsl_sf_gamma.h
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#ifndef __GSL_SF_GAMMA_H__
#define __GSL_SF_GAMMA_H__
#include <gsl/gsl_sf_result.h>
#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS /* empty */
# define __END_DECLS /* empty */
#endif
__BEGIN_DECLS
/* Log[Gamma(x)], x not a negative integer
* Uses real Lanczos method.
* Returns the real part of Log[Gamma[x]] when x < 0,
* i.e. Log[|Gamma[x]|].
*
* exceptions: GSL_EDOM, GSL_EROUND
*/
int gsl_sf_lngamma_e(double x, gsl_sf_result * result);
double gsl_sf_lngamma(const double x);
/* Log[Gamma(x)], x not a negative integer
* Uses real Lanczos method. Determines
* the sign of Gamma[x] as well as Log[|Gamma[x]|] for x < 0.
* So Gamma[x] = sgn * Exp[result_lg].
*
* exceptions: GSL_EDOM, GSL_EROUND
*/
int gsl_sf_lngamma_sgn_e(double x, gsl_sf_result * result_lg, double *sgn);
/* Gamma(x), x not a negative integer
* Uses real Lanczos method.
*
* exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EROUND
*/
int gsl_sf_gamma_e(const double x, gsl_sf_result * result);
double gsl_sf_gamma(const double x);
/* Regulated Gamma Function, x > 0
* Gamma^*(x) = Gamma(x)/(Sqrt[2Pi] x^(x-1/2) exp(-x))
* = (1 + 1/(12x) + ...), x->Inf
* A useful suggestion of Temme.
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gammastar_e(const double x, gsl_sf_result * result);
double gsl_sf_gammastar(const double x);
/* 1/Gamma(x)
* Uses real Lanczos method.
*
* exceptions: GSL_EUNDRFLW, GSL_EROUND
*/
int gsl_sf_gammainv_e(const double x, gsl_sf_result * result);
double gsl_sf_gammainv(const double x);
/* Log[Gamma(z)] for z complex, z not a negative integer
* Uses complex Lanczos method. Note that the phase part (arg)
* is not well-determined when |z| is very large, due
* to inevitable roundoff in restricting to (-Pi,Pi].
* This will raise the GSL_ELOSS exception when it occurs.
* The absolute value part (lnr), however, never suffers.
*
* Calculates:
* lnr = log|Gamma(z)|
* arg = arg(Gamma(z)) in (-Pi, Pi]
*
* exceptions: GSL_EDOM, GSL_ELOSS
*/
int gsl_sf_lngamma_complex_e(double zr, double zi, gsl_sf_result * lnr, gsl_sf_result * arg);
/* x^n / n!
*
* x >= 0.0, n >= 0
* exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
*/
int gsl_sf_taylorcoeff_e(const int n, const double x, gsl_sf_result * result);
double gsl_sf_taylorcoeff(const int n, const double x);
/* n!
*
* exceptions: GSL_EDOM, GSL_OVRFLW
*/
int gsl_sf_fact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_fact(const unsigned int n);
/* n!! = n(n-2)(n-4) ...
*
* exceptions: GSL_EDOM, GSL_OVRFLW
*/
int gsl_sf_doublefact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_doublefact(const unsigned int n);
/* log(n!)
* Faster than ln(Gamma(n+1)) for n < 170; defers for larger n.
*
* exceptions: none
*/
int gsl_sf_lnfact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_lnfact(const unsigned int n);
/* log(n!!)
*
* exceptions: none
*/
int gsl_sf_lndoublefact_e(const unsigned int n, gsl_sf_result * result);
double gsl_sf_lndoublefact(const unsigned int n);
/* log(n choose m)
*
* exceptions: GSL_EDOM
*/
int gsl_sf_lnchoose_e(unsigned int n, unsigned int m, gsl_sf_result * result);
double gsl_sf_lnchoose(unsigned int n, unsigned int m);
/* n choose m
*
* exceptions: GSL_EDOM, GSL_EOVRFLW
*/
int gsl_sf_choose_e(unsigned int n, unsigned int m, gsl_sf_result * result);
double gsl_sf_choose(unsigned int n, unsigned int m);
/* Logarithm of Pochhammer (Apell) symbol
* log( (a)_x )
* where (a)_x := Gamma[a + x]/Gamma[a]
*
* a > 0, a+x > 0
*
* exceptions: GSL_EDOM
*/
int gsl_sf_lnpoch_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_lnpoch(const double a, const double x);
/* Logarithm of Pochhammer (Apell) symbol, with sign information.
* result = log( |(a)_x| )
* sgn = sgn( (a)_x )
* where (a)_x := Gamma[a + x]/Gamma[a]
*
* a != neg integer, a+x != neg integer
*
* exceptions: GSL_EDOM
*/
int gsl_sf_lnpoch_sgn_e(const double a, const double x, gsl_sf_result * result, double * sgn);
/* Pochhammer (Apell) symbol
* (a)_x := Gamma[a + x]/Gamma[x]
*
* a != neg integer, a+x != neg integer
*
* exceptions: GSL_EDOM, GSL_EOVRFLW
*/
int gsl_sf_poch_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_poch(const double a, const double x);
/* Relative Pochhammer (Apell) symbol
* ((a,x) - 1)/x
* where (a,x) = (a)_x := Gamma[a + x]/Gamma[a]
*
* exceptions: GSL_EDOM
*/
int gsl_sf_pochrel_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_pochrel(const double a, const double x);
/* Normalized Incomplete Gamma Function
*
* Q(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
*
* a >= 0, x >= 0
* Q(a,0) := 1
* Q(0,x) := 0, x != 0
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gamma_inc_Q_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_gamma_inc_Q(const double a, const double x);
/* Complementary Normalized Incomplete Gamma Function
*
* P(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,0,x} ]
*
* a > 0, x >= 0
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gamma_inc_P_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_gamma_inc_P(const double a, const double x);
/* Non-normalized Incomplete Gamma Function
*
* Gamma(a,x) := Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
*
* x >= 0.0
* Gamma(a, 0) := Gamma(a)
*
* exceptions: GSL_EDOM
*/
int gsl_sf_gamma_inc_e(const double a, const double x, gsl_sf_result * result);
double gsl_sf_gamma_inc(const double a, const double x);
/* Logarithm of Beta Function
* Log[B(a,b)]
*
* a > 0, b > 0
* exceptions: GSL_EDOM
*/
int gsl_sf_lnbeta_e(const double a, const double b, gsl_sf_result * result);
double gsl_sf_lnbeta(const double a, const double b);
int gsl_sf_lnbeta_sgn_e(const double x, const double y, gsl_sf_result * result, double * sgn);
/* Beta Function
* B(a,b)
*
* a > 0, b > 0
* exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW
*/
int gsl_sf_beta_e(const double a, const double b, gsl_sf_result * result);
double gsl_sf_beta(const double a, const double b);
/* Normalized Incomplete Beta Function
* B_x(a,b)/B(a,b)
*
* a > 0, b > 0, 0 <= x <= 1
* exceptions: GSL_EDOM, GSL_EUNDRFLW
*/
int gsl_sf_beta_inc_e(const double a, const double b, const double x, gsl_sf_result * result);
double gsl_sf_beta_inc(const double a, const double b, const double x);
/* The maximum x such that gamma(x) is not
* considered an overflow.
*/
#define GSL_SF_GAMMA_XMAX 171.0
/* The maximum n such that gsl_sf_fact(n) does not give an overflow. */
#define GSL_SF_FACT_NMAX 170
/* The maximum n such that gsl_sf_doublefact(n) does not give an overflow. */
#define GSL_SF_DOUBLEFACT_NMAX 297
__END_DECLS
#endif /* __GSL_SF_GAMMA_H__ */