blob: 4ca4f1f4cf6101e37a75cea9ae0e9f72a671ba61 [file] [log] [blame]
/* sum/test.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_sum.h>
#include <gsl/gsl_ieee_utils.h>
#define N 50
void check_trunc (double * t, double expected, const char * desc);
void check_full (double * t, double expected, const char * desc);
int
main (void)
{
gsl_ieee_env_setup ();
{
double t[N];
int n;
const double zeta_2 = M_PI * M_PI / 6.0;
/* terms for zeta(2) */
for (n = 0; n < N; n++)
{
double np1 = n + 1.0;
t[n] = 1.0 / (np1 * np1);
}
check_trunc (t, zeta_2, "zeta(2)");
check_full (t, zeta_2, "zeta(2)");
}
{
double t[N];
double x, y;
int n;
/* terms for exp(10.0) */
x = 10.0;
y = exp(x);
t[0] = 1.0;
for (n = 1; n < N; n++)
{
t[n] = t[n - 1] * (x / n);
}
check_trunc (t, y, "exp(10)");
check_full (t, y, "exp(10)");
}
{
double t[N];
double x, y;
int n;
/* terms for exp(-10.0) */
x = -10.0;
y = exp(x);
t[0] = 1.0;
for (n = 1; n < N; n++)
{
t[n] = t[n - 1] * (x / n);
}
check_trunc (t, y, "exp(-10)");
check_full (t, y, "exp(-10)");
}
{
double t[N];
double x, y;
int n;
/* terms for -log(1-x) */
x = 0.5;
y = -log(1-x);
t[0] = x;
for (n = 1; n < N; n++)
{
t[n] = t[n - 1] * (x * n) / (n + 1.0);
}
check_trunc (t, y, "-log(1/2)");
check_full (t, y, "-log(1/2)");
}
{
double t[N];
double x, y;
int n;
/* terms for -log(1-x) */
x = -1.0;
y = -log(1-x);
t[0] = x;
for (n = 1; n < N; n++)
{
t[n] = t[n - 1] * (x * n) / (n + 1.0);
}
check_trunc (t, y, "-log(2)");
check_full (t, y, "-log(2)");
}
{
double t[N];
int n;
double result = 0.192594048773;
/* terms for an alternating asymptotic series */
t[0] = 3.0 / (M_PI * M_PI);
for (n = 1; n < N; n++)
{
t[n] = -t[n - 1] * (4.0 * (n + 1.0) - 1.0) / (M_PI * M_PI);
}
check_trunc (t, result, "asymptotic series");
check_full (t, result, "asymptotic series");
}
{
double t[N];
int n;
/* Euler's gamma from GNU Calc (precision = 32) */
double result = 0.5772156649015328606065120900824;
/* terms for Euler's gamma */
t[0] = 1.0;
for (n = 1; n < N; n++)
{
t[n] = 1/(n+1.0) + log(n/(n+1.0));
}
check_trunc (t, result, "Euler's constant");
check_full (t, result, "Euler's constant");
}
{
double t[N];
int n;
/* eta(1/2) = sum_{k=1}^{\infty} (-1)^(k+1) / sqrt(k)
From Levin, Intern. J. Computer Math. B3:371--388, 1973.
I=(1-sqrt(2))zeta(1/2)
=(2/sqrt(pi))*integ(1/(exp(x^2)+1),x,0,inf) */
double result = 0.6048986434216305; /* approx */
/* terms for eta(1/2) */
for (n = 0; n < N; n++)
{
t[n] = (n%2 ? -1 : 1) * 1.0 /sqrt(n + 1.0);
}
check_trunc (t, result, "eta(1/2)");
check_full (t, result, "eta(1/2)");
}
exit (gsl_test_summary ());
}
void
check_trunc (double * t, double expected, const char * desc)
{
double sum_accel, prec;
gsl_sum_levin_utrunc_workspace * w = gsl_sum_levin_utrunc_alloc (N);
gsl_sum_levin_utrunc_accel (t, N, w, &sum_accel, &prec);
gsl_test_rel (sum_accel, expected, 1e-8, "trunc result, %s", desc);
/* No need to check precision for truncated result since this is not
a meaningful number */
gsl_sum_levin_utrunc_free (w);
}
void
check_full (double * t, double expected, const char * desc)
{
double sum_accel, err_est, sd_actual, sd_est;
gsl_sum_levin_u_workspace * w = gsl_sum_levin_u_alloc (N);
gsl_sum_levin_u_accel (t, N, w, &sum_accel, &err_est);
gsl_test_rel (sum_accel, expected, 1e-8, "full result, %s", desc);
sd_est = -log10 (err_est/fabs(sum_accel));
sd_actual = -log10 (DBL_EPSILON + fabs ((sum_accel - expected)/expected));
/* Allow one digit of slop */
gsl_test (sd_est > sd_actual + 1.0, "full significant digits, %s (%g vs %g)", desc, sd_est, sd_actual);
gsl_sum_levin_u_free (w);
}