blob: 7d621eb9b56df7081631ac6f016d6bf867998f0f [file] [log] [blame]
/* wavelet/dwt.c
*
* Copyright (C) 2004 Ivo Alxneit
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* function dwt_step is based on the public domain function pwt.c
* available from http://www.numerical-recipes.com
*/
#include <config.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_wavelet.h>
#include <gsl/gsl_wavelet2d.h>
#define ELEMENT(a,stride,i) ((a)[(stride)*(i)])
static int binary_logn (const size_t n);
static void dwt_step (const gsl_wavelet * w, double *a, size_t stride, size_t n, gsl_wavelet_direction dir, gsl_wavelet_workspace * work);
static int
binary_logn (const size_t n)
{
size_t ntest;
size_t logn = 0;
size_t k = 1;
while (k < n)
{
k *= 2;
logn++;
}
ntest = (1 << logn);
if (n != ntest)
{
return -1; /* n is not a power of 2 */
}
return logn;
}
static void
dwt_step (const gsl_wavelet * w, double *a, size_t stride, size_t n,
gsl_wavelet_direction dir, gsl_wavelet_workspace * work)
{
double ai, ai1;
size_t i, ii;
size_t jf;
size_t k;
size_t n1, ni, nh, nmod;
for (i = 0; i < work->n; i++)
{
work->scratch[i] = 0.0;
}
nmod = w->nc * n;
nmod -= w->offset; /* center support */
n1 = n - 1;
nh = n >> 1;
if (dir == gsl_wavelet_forward)
{
for (ii = 0, i = 0; i < n; i += 2, ii++)
{
ni = i + nmod;
for (k = 0; k < w->nc; k++)
{
jf = n1 & (ni + k);
work->scratch[ii] += w->h1[k] * ELEMENT (a, stride, jf);
work->scratch[ii + nh] += w->g1[k] * ELEMENT (a, stride, jf);
}
}
}
else
{
for (ii = 0, i = 0; i < n; i += 2, ii++)
{
ai = ELEMENT (a, stride, ii);
ai1 = ELEMENT (a, stride, ii + nh);
ni = i + nmod;
for (k = 0; k < w->nc; k++)
{
jf = (n1 & (ni + k));
work->scratch[jf] += (w->h2[k] * ai + w->g2[k] * ai1);
}
}
}
for (i = 0; i < n; i++)
{
ELEMENT (a, stride, i) = work->scratch[i];
}
}
int
gsl_wavelet_transform (const gsl_wavelet * w,
double *data, size_t stride, size_t n,
gsl_wavelet_direction dir,
gsl_wavelet_workspace * work)
{
size_t i;
if (work->n < n)
{
GSL_ERROR ("not enough workspace provided", GSL_EINVAL);
}
if (binary_logn (n) == -1)
{
GSL_ERROR ("n is not a power of 2", GSL_EINVAL);
}
if (n < 2)
{
return GSL_SUCCESS;
}
if (dir == gsl_wavelet_forward)
{
for (i = n; i >= 2; i >>= 1)
{
dwt_step (w, data, stride, i, dir, work);
}
}
else
{
for (i = 2; i <= n; i <<= 1)
{
dwt_step (w, data, stride, i, dir, work);
}
}
return GSL_SUCCESS;
}
int
gsl_wavelet_transform_forward (const gsl_wavelet * w,
double *data, size_t stride, size_t n,
gsl_wavelet_workspace * work)
{
return gsl_wavelet_transform (w, data, stride, n, gsl_wavelet_forward, work);
}
int
gsl_wavelet_transform_inverse (const gsl_wavelet * w,
double *data, size_t stride, size_t n,
gsl_wavelet_workspace * work)
{
return gsl_wavelet_transform (w, data, stride, n, gsl_wavelet_backward, work);
}
/* Leaving this out for now BJG */
#if 0
int
gsl_dwt_vector (const gsl_wavelet * w, gsl_vector *v, gsl_wavelet_direction
dir, gsl_wavelet_workspace * work)
{
return gsl_dwt (w, v->data, v->stride, v->size, dir, work);
}
#endif
int
gsl_wavelet2d_transform (const gsl_wavelet * w,
double *data, size_t tda, size_t size1,
size_t size2, gsl_wavelet_direction dir,
gsl_wavelet_workspace * work)
{
size_t i;
if (size1 != size2)
{
GSL_ERROR ("2d dwt works only with square matrix", GSL_EINVAL);
}
if (work->n < size1)
{
GSL_ERROR ("not enough workspace provided", GSL_EINVAL);
}
if (binary_logn (size1) == -1)
{
GSL_ERROR ("n is not a power of 2", GSL_EINVAL);
}
if (size1 < 2)
{
return GSL_SUCCESS;
}
if (dir == gsl_wavelet_forward)
{
for (i = 0; i < size1; i++) /* for every row j */
{
gsl_wavelet_transform (w, &ELEMENT(data, tda, i), 1, size1, dir, work);
}
for (i = 0; i < size2; i++) /* for every column j */
{
gsl_wavelet_transform (w, &ELEMENT(data, 1, i), tda, size2, dir, work);
}
}
else
{
for (i = 0; i < size2; i++) /* for every column j */
{
gsl_wavelet_transform (w, &ELEMENT(data, 1, i), tda, size2, dir, work);
}
for (i = 0; i < size1; i++) /* for every row j */
{
gsl_wavelet_transform (w, &ELEMENT(data, tda, i), 1, size1, dir, work);
}
}
return GSL_SUCCESS;
}
int
gsl_wavelet2d_nstransform (const gsl_wavelet * w,
double *data, size_t tda, size_t size1,
size_t size2, gsl_wavelet_direction dir,
gsl_wavelet_workspace * work)
{
size_t i, j;
if (size1 != size2)
{
GSL_ERROR ("2d dwt works only with square matrix", GSL_EINVAL);
}
if (work->n < size1)
{
GSL_ERROR ("not enough workspace provided", GSL_EINVAL);
}
if (binary_logn (size1) == -1)
{
GSL_ERROR ("n is not a power of 2", GSL_EINVAL);
}
if (size1 < 2)
{
return GSL_SUCCESS;
}
if (dir == gsl_wavelet_forward)
{
for (i = size1; i >= 2; i >>= 1)
{
for (j = 0; j < i; j++) /* for every row j */
{
dwt_step (w, &ELEMENT(data, tda, j), 1, i, dir, work);
}
for (j = 0; j < i; j++) /* for every column j */
{
dwt_step (w, &ELEMENT(data, 1, j), tda, i, dir, work);
}
}
}
else
{
for (i = 2; i <= size1; i <<= 1)
{
for (j = 0; j < i; j++) /* for every column j */
{
dwt_step (w, &ELEMENT(data, 1, j), tda, i, dir, work);
}
for (j = 0; j < i; j++) /* for every row j */
{
dwt_step (w, &ELEMENT(data, tda, j), 1, i, dir, work);
}
}
}
return GSL_SUCCESS;
}
int
gsl_wavelet2d_transform_forward (const gsl_wavelet * w,
double *data, size_t tda, size_t size1,
size_t size2, gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_transform (w, data, tda, size1, size2, gsl_wavelet_forward, work);
}
int
gsl_wavelet2d_transform_inverse (const gsl_wavelet * w,
double *data, size_t tda, size_t size1,
size_t size2, gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_transform (w, data, tda, size1, size2, gsl_wavelet_backward, work);
}
int
gsl_wavelet2d_nstransform_forward (const gsl_wavelet * w,
double *data, size_t tda, size_t size1,
size_t size2, gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_nstransform (w, data, tda, size1, size2, gsl_wavelet_forward, work);
}
int
gsl_wavelet2d_nstransform_inverse (const gsl_wavelet * w,
double *data, size_t tda, size_t size1,
size_t size2, gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_nstransform (w, data, tda, size1, size2, gsl_wavelet_backward, work);
}
int
gsl_wavelet2d_transform_matrix (const gsl_wavelet * w,
gsl_matrix * a,
gsl_wavelet_direction dir,
gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_transform (w, a->data,
a->tda, a->size1, a->size2,
dir, work);
}
int
gsl_wavelet2d_transform_matrix_forward (const gsl_wavelet * w,
gsl_matrix * a,
gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_transform (w, a->data,
a->tda, a->size1, a->size2,
gsl_wavelet_forward, work);
}
int
gsl_wavelet2d_transform_matrix_inverse (const gsl_wavelet * w,
gsl_matrix * a,
gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_transform (w, a->data,
a->tda, a->size1, a->size2,
gsl_wavelet_backward, work);
}
int
gsl_wavelet2d_nstransform_matrix (const gsl_wavelet * w,
gsl_matrix * a,
gsl_wavelet_direction dir,
gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_nstransform (w, a->data,
a->tda, a->size1, a->size2,
dir, work);
}
int
gsl_wavelet2d_nstransform_matrix_forward (const gsl_wavelet * w,
gsl_matrix * a,
gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_nstransform (w, a->data,
a->tda, a->size1, a->size2,
gsl_wavelet_forward, work);
}
int
gsl_wavelet2d_nstransform_matrix_inverse (const gsl_wavelet * w,
gsl_matrix * a,
gsl_wavelet_workspace * work)
{
return gsl_wavelet2d_nstransform (w, a->data,
a->tda, a->size1, a->size2,
gsl_wavelet_backward, work);
}