blob: 10fb2fd4791ed565ec11efdbf3bb391f661d9720 [file] [log] [blame]
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
*/
/*
* mapdescv.c++
*
* $Date: 2012/03/29 17:22:18 $ $Revision: 1.1.1.1 $
* $Header: /cvs/bao-parsec/pkgs/libs/mesa/src/src/glu/sgi/libnurbs/internals/mapdescv.cc,v 1.1.1.1 2012/03/29 17:22:18 uid42307 Exp $
*/
#include "glimports.h"
#include "mystdio.h"
#include "myassert.h"
#include "mystring.h"
#include "mymath.h"
#include "nurbsconsts.h"
#include "mapdesc.h"
/*--------------------------------------------------------------------------
* calcPartialVelocity - calculate maximum magnitude of a given partial
* derivative
*--------------------------------------------------------------------------
*/
REAL
Mapdesc::calcPartialVelocity (
REAL *p,
int stride,
int ncols,
int partial,
REAL range )
{
REAL tmp[MAXORDER][MAXCOORDS];
REAL mag[MAXORDER];
assert( ncols <= MAXORDER );
int j, k, t;
// copy inhomogeneous control points into temporary array
for( j=0; j != ncols; j++ )
for( k=0; k != inhcoords; k++ )
tmp[j][k] = p[j*stride + k];
for( t=0; t != partial; t++ )
for( j=0; j != ncols-t-1; j++ )
for( k=0; k != inhcoords; k++ )
tmp[j][k] = tmp[j+1][k] - tmp[j][k];
// compute magnitude and store in mag array
for( j=0; j != ncols-partial; j++ ) {
mag[j] = 0.0;
for( k=0; k != inhcoords; k++ )
mag[j] += tmp[j][k] * tmp[j][k];
}
// compute scale factor
REAL fac = 1;
REAL invt = 1.0 / range;
for( t = ncols-1; t != ncols-1-partial; t-- )
fac *= t * invt;
// compute max magnitude of all entries in array
REAL max = 0.0;
for( j=0; j != ncols-partial; j++ )
if( mag[j] > max ) max = mag[j];
max = fac * sqrtf( (float) max );
return max;
}
/*--------------------------------------------------------------------------
* calcPartialVelocity - calculate maximum magnitude of a given partial
* derivative
*--------------------------------------------------------------------------
*/
REAL
Mapdesc::calcPartialVelocity (
REAL *dist,
REAL *p,
int rstride,
int cstride,
int nrows,
int ncols,
int spartial,
int tpartial,
REAL srange,
REAL trange,
int side )
{
REAL tmp[MAXORDER][MAXORDER][MAXCOORDS];
REAL mag[MAXORDER][MAXORDER];
assert( nrows <= MAXORDER );
assert( ncols <= MAXORDER );
REAL *tp = &tmp[0][0][0];
REAL *mp = &mag[0][0];
const int istride = sizeof( tmp[0]) / sizeof( tmp[0][0][0] );
const int jstride = sizeof( tmp[0][0]) / sizeof( tmp[0][0][0] );
/*
const int kstride = sizeof( tmp[0][0][0]) / sizeof( tmp[0][0][0] );
*/
const int mistride = sizeof( mag[0]) / sizeof( mag[0][0] );
const int mjstride = sizeof( mag[0][0]) / sizeof( mag[0][0] );
const int idist = nrows * istride;
const int jdist = ncols * jstride;
/*
const int kdist = inhcoords * kstride;
*/
const int id = idist - spartial * istride;
const int jd = jdist - tpartial * jstride;
{
// copy control points
REAL *ti = tp;
REAL *qi = p;
REAL *til = tp + idist;
for( ; ti != til; ) {
REAL *tj = ti;
REAL *qj = qi;
REAL *tjl = ti + jdist;
for( ; tj != tjl; ) {
for( int k=0; k != inhcoords; k++ ) {
tj[k] = qj[k];
}
tj += jstride;
qj += cstride;
}
ti += istride;
qi += rstride;
}
}
{
// compute (s)-partial derivative control points
REAL *til = tp + idist - istride;
const REAL *till = til - ( spartial * istride );
for( ; til != till; til -= istride )
for( REAL *ti = tp; ti != til; ti += istride )
for( REAL *tj = ti, *tjl = tj + jdist; tj != tjl; tj += jstride )
for( int k=0; k != inhcoords; k++ )
tj[k] = tj[k+istride] - tj[k];
}
{
// compute (s,t)-partial derivative control points
REAL *tjl = tp + jdist - jstride;
const REAL *tjll = tjl - ( tpartial * jstride );
for( ; tjl != tjll; tjl -= jstride )
for( REAL *tj = tp; tj != tjl; tj += jstride )
for( REAL *ti = tj, *til = ti + id; ti != til; ti += istride )
for( int k=0; k != inhcoords; k++ )
ti[k] = ti[k+jstride] - ti[k];
}
REAL max = 0.0;
{
// compute magnitude and store in mag array
memset( (void *) mp, 0, sizeof( mag ) );
for( REAL *ti = tp, *mi = mp, *til = tp + id; ti != til; ti += istride, mi += mistride )
for( REAL *tj = ti, *mj = mi, *tjl = ti + jd; tj != tjl; tj += jstride, mj += mjstride ) {
for( int k=0; k != inhcoords; k++ )
*mj += tj[k] * tj[k];
if( *mj > max ) max = *mj;
}
}
int i, j;
// compute scale factor
REAL fac = 1.0;
{
REAL invs = 1.0 / srange;
REAL invt = 1.0 / trange;
for( int s = nrows-1, slast = s-spartial; s != slast; s-- )
fac *= s * invs;
for( int t = ncols-1, tlast = t-tpartial; t != tlast; t-- )
fac *= t * invt;
}
if( side == 0 ) {
// compute max magnitude of first and last column
dist[0] = 0.0;
dist[1] = 0.0;
for( i=0; i != nrows-spartial; i++ ) {
j = 0;
if( mag[i][j] > dist[0] ) dist[0] = mag[i][j];
j = ncols-tpartial-1;
if( mag[i][j] > dist[1] ) dist[1] = mag[i][j];
}
dist[0] = fac * sqrtf( dist[0] );
dist[1] = fac * sqrtf( dist[1] );
} else if( side == 1 ) {
// compute max magnitude of first and last row
dist[0] = 0.0;
dist[1] = 0.0;
for( j=0; j != ncols-tpartial; j++ ) {
i = 0;
if( mag[i][j] > dist[0] ) dist[0] = mag[i][j];
i = nrows-spartial-1;
if( mag[i][j] > dist[1] ) dist[1] = mag[i][j];
}
dist[0] = fac * sqrtf( dist[0] );
dist[1] = fac * sqrtf( dist[1] );
}
max = fac * sqrtf( (float) max );
return max;
}