blob: 3451a4ea0351b76bc39efd958d40d4ccbedf8765 [file] [log] [blame]
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
*/
/*
* patch.c++
*
* $Date: 2012/03/29 17:22:18 $ $Revision: 1.1.1.1 $
* $Header: /cvs/bao-parsec/pkgs/libs/mesa/src/src/glu/sgi/libnurbs/internals/patch.cc,v 1.1.1.1 2012/03/29 17:22:18 uid42307 Exp $
*/
#include <stdio.h>
#include "glimports.h"
#include "mystdio.h"
#include "myassert.h"
#include "mymath.h"
#include "mystring.h"
#include "patch.h"
#include "mapdesc.h"
#include "quilt.h"
#include "nurbsconsts.h"
#include "simplemath.h" //for glu_abs function in ::singleStep();
/*--------------------------------------------------------------------------
* Patch - copy patch from quilt and transform control points
*--------------------------------------------------------------------------
*/
Patch::Patch( Quilt_ptr geo, REAL *pta, REAL *ptb, Patch *n )
{
/* pspec[i].range is uninit here */
mapdesc = geo->mapdesc;
cullval = mapdesc->isCulling() ? CULL_ACCEPT : CULL_TRIVIAL_ACCEPT;
notInBbox = mapdesc->isBboxSubdividing() ? 1 : 0;
needsSampling = mapdesc->isRangeSampling() ? 1 : 0;
pspec[0].order = geo->qspec[0].order;
pspec[1].order = geo->qspec[1].order;
pspec[0].stride = pspec[1].order * MAXCOORDS;
pspec[1].stride = MAXCOORDS;
/* transform control points to sampling and culling spaces */
REAL *ps = geo->cpts;
geo->select( pta, ptb );
ps += geo->qspec[0].offset;
ps += geo->qspec[1].offset;
ps += geo->qspec[0].index * geo->qspec[0].order * geo->qspec[0].stride;
ps += geo->qspec[1].index * geo->qspec[1].order * geo->qspec[1].stride;
if( needsSampling ) {
mapdesc->xformSampling( ps, geo->qspec[0].order, geo->qspec[0].stride,
geo->qspec[1].order, geo->qspec[1].stride,
spts, pspec[0].stride, pspec[1].stride );
}
if( cullval == CULL_ACCEPT ) {
mapdesc->xformCulling( ps, geo->qspec[0].order, geo->qspec[0].stride,
geo->qspec[1].order, geo->qspec[1].stride,
cpts, pspec[0].stride, pspec[1].stride );
}
if( notInBbox ) {
mapdesc->xformBounding( ps, geo->qspec[0].order, geo->qspec[0].stride,
geo->qspec[1].order, geo->qspec[1].stride,
bpts, pspec[0].stride, pspec[1].stride );
}
/* set scale range */
pspec[0].range[0] = geo->qspec[0].breakpoints[geo->qspec[0].index];
pspec[0].range[1] = geo->qspec[0].breakpoints[geo->qspec[0].index+1];
pspec[0].range[2] = pspec[0].range[1] - pspec[0].range[0];
pspec[1].range[0] = geo->qspec[1].breakpoints[geo->qspec[1].index];
pspec[1].range[1] = geo->qspec[1].breakpoints[geo->qspec[1].index+1];
pspec[1].range[2] = pspec[1].range[1] - pspec[1].range[0];
// may need to subdivide to match range of sub-patch
if( pspec[0].range[0] != pta[0] ) {
assert( pspec[0].range[0] < pta[0] );
Patch lower( *this, 0, pta[0], 0 );
*this = lower;
}
if( pspec[0].range[1] != ptb[0] ) {
assert( pspec[0].range[1] > ptb[0] );
Patch upper( *this, 0, ptb[0], 0 );
}
if( pspec[1].range[0] != pta[1] ) {
assert( pspec[1].range[0] < pta[1] );
Patch lower( *this, 1, pta[1], 0 );
*this = lower;
}
if( pspec[1].range[1] != ptb[1] ) {
assert( pspec[1].range[1] > ptb[1] );
Patch upper( *this, 1, ptb[1], 0 );
}
checkBboxConstraint();
next = n;
}
/*--------------------------------------------------------------------------
* Patch - subdivide a patch along an isoparametric line
*--------------------------------------------------------------------------
*/
Patch::Patch( Patch& upper, int param, REAL value, Patch *n )
{
Patch& lower = *this;
lower.cullval = upper.cullval;
lower.mapdesc = upper.mapdesc;
lower.notInBbox = upper.notInBbox;
lower.needsSampling = upper.needsSampling;
lower.pspec[0].order = upper.pspec[0].order;
lower.pspec[1].order = upper.pspec[1].order;
lower.pspec[0].stride = upper.pspec[0].stride;
lower.pspec[1].stride = upper.pspec[1].stride;
lower.next = n;
/* reset scale range */
switch( param ) {
case 0: {
REAL d = (value-upper.pspec[0].range[0]) / upper.pspec[0].range[2];
if( needsSampling )
mapdesc->subdivide( upper.spts, lower.spts, d, pspec[1].order,
pspec[1].stride, pspec[0].order, pspec[0].stride );
if( cullval == CULL_ACCEPT )
mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[1].order,
pspec[1].stride, pspec[0].order, pspec[0].stride );
if( notInBbox )
mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[1].order,
pspec[1].stride, pspec[0].order, pspec[0].stride );
lower.pspec[0].range[0] = upper.pspec[0].range[0];
lower.pspec[0].range[1] = value;
lower.pspec[0].range[2] = value - upper.pspec[0].range[0];
upper.pspec[0].range[0] = value;
upper.pspec[0].range[2] = upper.pspec[0].range[1] - value;
lower.pspec[1].range[0] = upper.pspec[1].range[0];
lower.pspec[1].range[1] = upper.pspec[1].range[1];
lower.pspec[1].range[2] = upper.pspec[1].range[2];
break;
}
case 1: {
REAL d = (value-upper.pspec[1].range[0]) / upper.pspec[1].range[2];
if( needsSampling )
mapdesc->subdivide( upper.spts, lower.spts, d, pspec[0].order,
pspec[0].stride, pspec[1].order, pspec[1].stride );
if( cullval == CULL_ACCEPT )
mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[0].order,
pspec[0].stride, pspec[1].order, pspec[1].stride );
if( notInBbox )
mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[0].order,
pspec[0].stride, pspec[1].order, pspec[1].stride );
lower.pspec[0].range[0] = upper.pspec[0].range[0];
lower.pspec[0].range[1] = upper.pspec[0].range[1];
lower.pspec[0].range[2] = upper.pspec[0].range[2];
lower.pspec[1].range[0] = upper.pspec[1].range[0];
lower.pspec[1].range[1] = value;
lower.pspec[1].range[2] = value - upper.pspec[1].range[0];
upper.pspec[1].range[0] = value;
upper.pspec[1].range[2] = upper.pspec[1].range[1] - value;
break;
}
}
// inherit bounding box
if( mapdesc->isBboxSubdividing() && ! notInBbox )
memcpy( lower.bb, upper.bb, sizeof( bb ) );
lower.checkBboxConstraint();
upper.checkBboxConstraint();
}
/*--------------------------------------------------------------------------
* clamp - clamp the sampling rate to a given maximum
*--------------------------------------------------------------------------
*/
void
Patch::clamp( void )
{
if( mapdesc->clampfactor != N_NOCLAMPING ) {
pspec[0].clamp( mapdesc->clampfactor );
pspec[1].clamp( mapdesc->clampfactor );
}
}
void
Patchspec::clamp( REAL clampfactor )
{
if( sidestep[0] < minstepsize )
sidestep[0] = clampfactor * minstepsize;
if( sidestep[1] < minstepsize )
sidestep[1] = clampfactor * minstepsize;
if( stepsize < minstepsize )
stepsize = clampfactor * minstepsize;
}
void
Patch::checkBboxConstraint( void )
{
if( notInBbox &&
mapdesc->bboxTooBig( bpts, pspec[0].stride, pspec[1].stride,
pspec[0].order, pspec[1].order, bb ) != 1 ) {
notInBbox = 0;
}
}
void
Patch::bbox( void )
{
if( mapdesc->isBboxSubdividing() )
mapdesc->surfbbox( bb );
}
/*--------------------------------------------------------------------------
* getstepsize - compute the sampling density across the patch
* and determine if patch needs to be subdivided
*--------------------------------------------------------------------------
*/
void
Patch::getstepsize( void )
{
pspec[0].minstepsize = pspec[1].minstepsize = 0;
pspec[0].needsSubdivision = pspec[1].needsSubdivision = 0;
if( mapdesc->isConstantSampling() ) {
// fixed number of samples per patch in each direction
// maxsrate is number of s samples per patch
// maxtrate is number of t samples per patch
pspec[0].getstepsize( mapdesc->maxsrate );
pspec[1].getstepsize( mapdesc->maxtrate );
} else if( mapdesc->isDomainSampling() ) {
// maxsrate is number of s samples per unit s length of domain
// maxtrate is number of t samples per unit t length of domain
pspec[0].getstepsize( mapdesc->maxsrate * pspec[0].range[2] );
pspec[1].getstepsize( mapdesc->maxtrate * pspec[1].range[2] );
} else if( ! needsSampling ) {
pspec[0].singleStep();
pspec[1].singleStep();
} else {
// upper bound on path length between sample points
REAL tmp[MAXORDER][MAXORDER][MAXCOORDS];
const int trstride = sizeof(tmp[0]) / sizeof(REAL);
const int tcstride = sizeof(tmp[0][0]) / sizeof(REAL);
assert( pspec[0].order <= MAXORDER );
/* points have been transformed, therefore they are homogeneous */
int val = mapdesc->project( spts, pspec[0].stride, pspec[1].stride,
&tmp[0][0][0], trstride, tcstride,
pspec[0].order, pspec[1].order );
if( val == 0 ) {
// control points cross infinity, therefore partials are undefined
pspec[0].getstepsize( mapdesc->maxsrate );
pspec[1].getstepsize( mapdesc->maxtrate );
} else {
REAL t1 = mapdesc->getProperty( N_PIXEL_TOLERANCE );
// REAL t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
pspec[0].minstepsize = ( mapdesc->maxsrate > 0.0 ) ?
(pspec[0].range[2] / mapdesc->maxsrate) : 0.0;
pspec[1].minstepsize = ( mapdesc->maxtrate > 0.0 ) ?
(pspec[1].range[2] / mapdesc->maxtrate) : 0.0;
if( mapdesc->isParametricDistanceSampling() ||
mapdesc->isObjectSpaceParaSampling() ) {
REAL t2;
t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
// t2 is upper bound on the distance between surface and tessellant
REAL ssv[2], ttv[2];
REAL ss = mapdesc->calcPartialVelocity( ssv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 2, 0, pspec[0].range[2], pspec[1].range[2], 0 );
REAL st = mapdesc->calcPartialVelocity( 0, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 1, pspec[0].range[2], pspec[1].range[2], -1 );
REAL tt = mapdesc->calcPartialVelocity( ttv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 2, pspec[0].range[2], pspec[1].range[2], 1 );
//make sure that ss st and tt are nonnegative:
if(ss <0) ss = -ss;
if(st <0) st = -st;
if(tt <0) tt = -tt;
if( ss != 0.0 && tt != 0.0 ) {
/* printf( "ssv[0] %g ssv[1] %g ttv[0] %g ttv[1] %g\n",
ssv[0], ssv[1], ttv[0], ttv[1] ); */
REAL ttq = sqrtf( (float) ss );
REAL ssq = sqrtf( (float) tt );
REAL ds = sqrtf( 4 * t2 * ttq / ( ss * ttq + st * ssq ) );
REAL dt = sqrtf( 4 * t2 * ssq / ( tt * ssq + st * ttq ) );
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
} else if( ss != 0.0 ) {
REAL x = pspec[1].range[2] * st;
REAL ds = ( sqrtf( x * x + 8.0 * t2 * ss ) - x ) / ss;
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
pspec[1].singleStep();
} else if( tt != 0.0 ) {
REAL x = pspec[0].range[2] * st;
REAL dt = ( sqrtf( x * x + 8.0 * t2 * tt ) - x ) / tt;
pspec[0].singleStep();
REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
} else {
if( 4.0 * t2 > st * pspec[0].range[2] * pspec[1].range[2] ) {
pspec[0].singleStep();
pspec[1].singleStep();
} else {
REAL area = 4.0 * t2 / st;
REAL ds = sqrtf( area * pspec[0].range[2] / pspec[1].range[2] );
REAL dt = sqrtf( area * pspec[1].range[2] / pspec[0].range[2] );
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
pspec[0].sidestep[0] = pspec[0].range[2];
pspec[0].sidestep[1] = pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = pspec[1].range[2];
pspec[1].sidestep[1] = pspec[1].range[2];
}
}
} else if( mapdesc->isPathLengthSampling() ||
mapdesc->isObjectSpacePathSampling()) {
// t1 is upper bound on path length
REAL msv[2], mtv[2];
REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
REAL side_scale = 1.0;
if( ms != 0.0 ) {
if( mt != 0.0 ) {
/* REAL d = t1 / ( ms * ms + mt * mt );*/
/* REAL ds = mt * d;*/
REAL ds = t1 / (2.0*ms);
/* REAL dt = ms * d;*/
REAL dt = t1 / (2.0*mt);
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[0]) : pspec[0].range[2];
pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[1]) : pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[0]) : pspec[1].range[2];
pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[1]) : pspec[1].range[2];
} else {
pspec[0].stepsize = ( t1 < ms * pspec[0].range[2] ) ? (t1 / ms) : pspec[0].range[2];
pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2];
pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2];
pspec[1].singleStep();
}
} else {
if( mt != 0.0 ) {
pspec[0].singleStep();
pspec[1].stepsize = ( t1 < mt * pspec[1].range[2] ) ? (t1 / mt) : pspec[1].range[2];
pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2];
pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2];
} else {
pspec[0].singleStep();
pspec[1].singleStep();
}
}
} else if( mapdesc->isSurfaceAreaSampling() ) {
// t is the square root of area
/*
REAL msv[2], mtv[2];
REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
if( ms != 0.0 && mt != 0.0 ) {
REAL d = 1.0 / (ms * mt);
t *= M_SQRT2;
REAL ds = t * sqrtf( d * pspec[0].range[2] / pspec[1].range[2] );
REAL dt = t * sqrtf( d * pspec[1].range[2] / pspec[0].range[2] );
pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t ) ? (t / msv[0]) : pspec[0].range[2];
pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t ) ? (t / msv[1]) : pspec[0].range[2];
pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t ) ? (t / mtv[0]) : pspec[1].range[2];
pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t ) ? (t / mtv[1]) : pspec[1].range[2];
} else {
pspec[0].singleStep();
pspec[1].singleStep();
}
*/
} else {
pspec[0].singleStep();
pspec[1].singleStep();
}
}
}
#ifdef DEBUG
_glu_dprintf( "sidesteps %g %g %g %g, stepsize %g %g\n",
pspec[0].sidestep[0], pspec[0].sidestep[1],
pspec[1].sidestep[0], pspec[1].sidestep[1],
pspec[0].stepsize, pspec[1].stepsize );
#endif
if( mapdesc->minsavings != N_NOSAVINGSSUBDIVISION ) {
REAL savings = 1./(pspec[0].stepsize * pspec[1].stepsize) ;
savings-= (2./( pspec[0].sidestep[0] + pspec[0].sidestep[1] )) *
(2./( pspec[1].sidestep[0] + pspec[1].sidestep[1] ));
savings *= pspec[0].range[2] * pspec[1].range[2];
if( savings > mapdesc->minsavings ) {
pspec[0].needsSubdivision = pspec[1].needsSubdivision = 1;
}
}
if( pspec[0].stepsize < pspec[0].minstepsize ) pspec[0].needsSubdivision = 1;
if( pspec[1].stepsize < pspec[1].minstepsize ) pspec[1].needsSubdivision = 1;
needsSampling = (needsSampling ? needsSamplingSubdivision() : 0);
}
void
Patchspec::singleStep()
{
stepsize = sidestep[0] = sidestep[1] = glu_abs(range[2]);
}
void
Patchspec::getstepsize( REAL max ) // max is number of samples for entire patch
{
stepsize = ( max >= 1.0 ) ? range[2] / max : range[2];
if (stepsize < 0.0) {
stepsize = -stepsize;
}
sidestep[0] = sidestep[1] = minstepsize = stepsize;
}
int
Patch::needsSamplingSubdivision( void )
{
return (pspec[0].needsSubdivision || pspec[1].needsSubdivision) ? 1 : 0;
}
int
Patch::needsNonSamplingSubdivision( void )
{
return notInBbox;
}
int
Patch::needsSubdivision( int param )
{
return pspec[param].needsSubdivision;
}
int
Patch::cullCheck( void )
{
if( cullval == CULL_ACCEPT )
cullval = mapdesc->cullCheck( cpts, pspec[0].order, pspec[0].stride,
pspec[1].order, pspec[1].stride );
return cullval;
}