blob: 0bb03c6fdcd450c1cd4533deea884df793ba133a [file] [log] [blame]
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
*/
/*
* slicer.c++
*
* $Date: 2012/03/29 17:22:17 $ $Revision: 1.1.1.1 $
* $Header: /cvs/bao-parsec/pkgs/libs/mesa/src/src/glu/sgi/libnurbs/internals/slicer.cc,v 1.1.1.1 2012/03/29 17:22:17 uid42307 Exp $
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "glimports.h"
#include "mystdio.h"
#include "myassert.h"
#include "bufpool.h"
#include "slicer.h"
#include "backend.h"
#include "arc.h"
#include "gridtrimvertex.h"
#include "simplemath.h"
#include "trimvertex.h"
#include "varray.h"
#include "polyUtil.h" //for area()
//static int count=0;
/*USE_OPTTT is initiated in trimvertex.h*/
#ifdef USE_OPTTT
#include <GL/gl.h>
#endif
//#define USE_READ_FLAG //whether to use new or old tesselator
//if defined, it reads "flagFile",
// if the number is 1, then use new tess
// otherwise, use the old tess.
//if not defined, then use new tess.
#ifdef USE_READ_FLAG
static Int read_flag(char* name);
Int newtess_flag = read_flag("flagFile");
#endif
//#define COUNT_TRIANGLES
#ifdef COUNT_TRIANGLES
Int num_triangles = 0;
Int num_quads = 0;
#endif
#define max(a,b) ((a>b)? a:b)
#define ZERO 0.00001 /*determing whether a loop is a rectngle or not*/
#define equalRect(a,b) ((glu_abs(a-b) <= ZERO)? 1:0) //only used in tessellating a rectangle
#if 0 // UNUSED
static Int is_Convex(Arc_ptr loop)
{
if(area(loop->tail(), loop->head(), loop->next->head()) <0 )
return 0;
for(Arc_ptr jarc = loop->next; jarc != loop; jarc = jarc->next)
{
if(area(jarc->tail(), jarc->head(), jarc->next->head()) < 0)
return 0;
}
return 1;
}
#endif
/******triangulate a monotone polygon**************/
#include "monoTriangulation.h"
#if 0 // UNUSED
static int is_U_monotone(Arc_ptr loop)
{
int n_changes=0;
int prev_sign;
int cur_sign;
Arc_ptr temp;
cur_sign = compV2InX(loop->head(), loop->tail());
n_changes = (compV2InX(loop->prev->head(), loop->prev->tail())
!= cur_sign);
for(temp=loop->next; temp != loop; temp = temp->next)
{
prev_sign = cur_sign;
cur_sign = compV2InX(temp->head(), temp->tail());
if(cur_sign != prev_sign)
{
#ifdef DEBUG
printf("***change signe\n");
#endif
n_changes++;
}
}
if(n_changes == 2) return 1;
else
return 0;
}
#endif
inline int compInY(REAL a[2], REAL b[2])
{
if(a[1] < b[1])
return -1;
else if (a[1] > b[1])
return 1;
else if(a[0] > b[0])
return 1;
else return -1;
}
void monoTriangulationLoop(Arc_ptr loop, Backend& backend, primStream* pStream)
{
int i;
//find the top, bottom, increasing and decreasing chain
//then call monoTrianulation
Arc_ptr jarc, temp;
Arc_ptr top;
Arc_ptr bot;
top = bot = loop;
if(compInY(loop->tail(), loop->prev->tail()) < 0)
{
//first find bot
for(temp = loop->next; temp != loop; temp = temp->next)
{
if(compInY(temp->tail(), temp->prev->tail()) > 0)
break;
}
bot = temp->prev;
//then find top
for(temp=loop->prev; temp != loop; temp = temp->prev)
{
if(compInY(temp->tail(), temp->prev->tail()) > 0)
break;
}
top = temp;
}
else //loop > loop->prev
{
for(temp=loop->next; temp != loop; temp = temp->next)
{
if(compInY(temp->tail(), temp->prev->tail()) < 0)
break;
}
top = temp->prev;
for(temp=loop->prev; temp != loop; temp = temp->prev)
{
if(compInY(temp->tail(), temp->prev->tail()) < 0)
break;
}
bot = temp;
}
//creat increase and decrease chains
vertexArray inc_chain(50); //this is a dynamci array
for(i=1; i<=top->pwlArc->npts-2; i++)
{
//the first vertex is the top which doesn't below to inc_chain
inc_chain.appendVertex(top->pwlArc->pts[i].param);
}
for(jarc=top->next; jarc != bot; jarc = jarc->next)
{
for(i=0; i<=jarc->pwlArc->npts-2; i++)
{
inc_chain.appendVertex(jarc->pwlArc->pts[i].param);
}
}
vertexArray dec_chain(50);
for(jarc = top->prev; jarc != bot; jarc = jarc->prev)
{
for(i=jarc->pwlArc->npts-2; i>=0; i--)
{
dec_chain.appendVertex(jarc->pwlArc->pts[i].param);
}
}
for(i=bot->pwlArc->npts-2; i>=1; i--)
{
dec_chain.appendVertex(jarc->pwlArc->pts[i].param);
}
monoTriangulationRec(top->tail(), bot->tail(), &inc_chain, 0,
&dec_chain, 0, &backend);
}
/********tesselate a rectanlge (OPTIMIZATION**************/
static void triangulateRectGen(Arc_ptr loop, int n_ulines, int n_vlines, Backend& backend);
static Int is_rect(Arc_ptr loop)
{
Int nlines =1;
for(Arc_ptr jarc = loop->next; jarc != loop; jarc = jarc->next)
{
nlines++;
if(nlines == 5)
break;
}
if(nlines != 4)
return 0;
/*
printf("here1\n");
printf("loop->tail=(%f,%f)\n", loop->tail()[0], loop->tail()[1]);
printf("loop->head=(%f,%f)\n", loop->head()[0], loop->head()[1]);
printf("loop->next->tail=(%f,%f)\n", loop->next->tail()[0], loop->next->tail()[1]);
printf("loop->next->head=(%f,%f)\n", loop->next->head()[0], loop->next->head()[1]);
if(fglu_abs(loop->tail()[0] - loop->head()[0])<0.000001)
printf("equal 1\n");
if(loop->next->tail()[1] == loop->next->head()[1])
printf("equal 2\n");
*/
if( (glu_abs(loop->tail()[0] - loop->head()[0])<=ZERO) &&
(glu_abs(loop->next->tail()[1] - loop->next->head()[1])<=ZERO) &&
(glu_abs(loop->prev->tail()[1] - loop->prev->head()[1])<=ZERO) &&
(glu_abs(loop->prev->prev->tail()[0] - loop->prev->prev->head()[0])<=ZERO)
)
return 1;
else if
( (glu_abs(loop->tail()[1] - loop->head()[1]) <= ZERO) &&
(glu_abs(loop->next->tail()[0] - loop->next->head()[0]) <= ZERO) &&
(glu_abs(loop->prev->tail()[0] - loop->prev->head()[0]) <= ZERO) &&
(glu_abs(loop->prev->prev->tail()[1] - loop->prev->prev->head()[1]) <= ZERO)
)
return 1;
else
return 0;
}
//a line with the same u for opt
#ifdef USE_OPTTT
static void evalLineNOGE_BU(TrimVertex *verts, int n, Backend& backend)
{
int i;
backend.preEvaluateBU(verts[0].param[0]);
for(i=0; i<n; i++)
backend.tmeshvertNOGE_BU(&verts[i]);
}
#endif
//a line with the same v for opt
#ifdef USE_OPTTT
static void evalLineNOGE_BV(TrimVertex *verts, int n, Backend& backend)
{
int i;
backend.preEvaluateBV(verts[0].param[1]);
for(i=0; i<n; i++)
backend.tmeshvertNOGE_BV(&verts[i]);
}
#endif
#ifdef USE_OPTTT
static void evalLineNOGE(TrimVertex *verts, int n, Backend& backend)
{
if(verts[0].param[0] == verts[n-1].param[0]) //all u;s are equal
evalLineNOGE_BU(verts, n, backend);
else if(verts[0].param[1] == verts[n-1].param[1]) //all v's are equal
evalLineNOGE_BV(verts, n, backend);
else
{
int i;
for(i=0; i<n; i++)
backend.tmeshvertNOGE(&verts[i]);
}
}
#endif
inline void OPT_OUTVERT(TrimVertex& vv, Backend& backend)
{
#ifdef USE_OPTTT
glNormal3fv(vv.cache_normal);
glVertex3fv(vv.cache_point);
#else
backend.tmeshvert(&vv);
#endif
}
static void triangulateRectAux(PwlArc* top, PwlArc* bot, PwlArc* left, PwlArc* right, Backend& backend);
static void triangulateRect(Arc_ptr loop, Backend& backend, int TB_or_LR, int ulinear, int vlinear)
{
//we know the loop is a rectangle, but not sure which is top
Arc_ptr top, bot, left, right;
if(loop->tail()[1] == loop->head()[1])
{
if(loop->tail()[1] > loop->prev->prev->tail()[1])
{
top = loop;
}
else{
top = loop->prev->prev;
}
}
else
{
if(loop->tail()[0] > loop->prev->prev->tail()[0])
{
//loop is the right arc
top = loop->next;
}
else
{
top = loop->prev;
}
}
left = top->next;
bot = left->next;
right= bot->next;
//if u, v are both nonlinear, then if the
//boundary is tessellated dense, we also
//sample the inside to get a better tesslletant.
if( (!ulinear) && (!vlinear))
{
int nu = top->pwlArc->npts;
if(nu < bot->pwlArc->npts)
nu = bot->pwlArc->npts;
int nv = left->pwlArc->npts;
if(nv < right->pwlArc->npts)
nv = right->pwlArc->npts;
/*
if(nu > 2 && nv > 2)
{
triangulateRectGen(top, nu-2, nv-2, backend);
return;
}
*/
}
if(TB_or_LR == 1)
triangulateRectAux(top->pwlArc, bot->pwlArc, left->pwlArc, right->pwlArc, backend);
else if(TB_or_LR == -1)
triangulateRectAux(left->pwlArc, right->pwlArc, bot->pwlArc, top->pwlArc, backend);
else
{
Int maxPointsTB = top->pwlArc->npts + bot->pwlArc->npts;
Int maxPointsLR = left->pwlArc->npts + right->pwlArc->npts;
if(maxPointsTB < maxPointsLR)
triangulateRectAux(left->pwlArc, right->pwlArc, bot->pwlArc, top->pwlArc, backend);
else
triangulateRectAux(top->pwlArc, bot->pwlArc, left->pwlArc, right->pwlArc, backend);
}
}
static void triangulateRectAux(PwlArc* top, PwlArc* bot, PwlArc* left, PwlArc* right, Backend& backend)
{ //if(maxPointsTB >= maxPointsLR)
{
Int d, topd_left, topd_right, botd_left, botd_right, i,j;
d = left->npts /2;
#ifdef USE_OPTTT
evalLineNOGE(top->pts, top->npts, backend);
evalLineNOGE(bot->pts, bot->npts, backend);
evalLineNOGE(left->pts, left->npts, backend);
evalLineNOGE(right->pts, right->npts, backend);
#endif
if(top->npts == 2) {
backend.bgntfan();
OPT_OUTVERT(top->pts[0], backend);//the root
for(i=0; i<left->npts; i++){
OPT_OUTVERT(left->pts[i], backend);
}
for(i=1; i<= bot->npts-2; i++){
OPT_OUTVERT(bot->pts[i], backend);
}
backend.endtfan();
backend.bgntfan();
OPT_OUTVERT(bot->pts[bot->npts-2], backend);
for(i=0; i<right->npts; i++){
OPT_OUTVERT(right->pts[i], backend);
}
backend.endtfan();
}
else if(bot->npts == 2) {
backend.bgntfan();
OPT_OUTVERT(bot->pts[0], backend);//the root
for(i=0; i<right->npts; i++){
OPT_OUTVERT(right->pts[i], backend);
}
for(i=1; i<= top->npts-2; i++){
OPT_OUTVERT(top->pts[i], backend);
}
backend.endtfan();
backend.bgntfan();
OPT_OUTVERT(top->pts[top->npts-2], backend);
for(i=0; i<left->npts; i++){
OPT_OUTVERT(left->pts[i], backend);
}
backend.endtfan();
}
else { //both top and bot have >=3 points
backend.bgntfan();
OPT_OUTVERT(top->pts[top->npts-2], backend);
for(i=0; i<=d; i++)
{
OPT_OUTVERT(left->pts[i], backend);
}
backend.endtfan();
backend.bgntfan();
OPT_OUTVERT(bot->pts[1], backend);
OPT_OUTVERT(top->pts[top->npts-2], backend);
for(i=d; i< left->npts; i++)
{
OPT_OUTVERT(left->pts[i], backend);
}
backend.endtfan();
d = right->npts/2;
//output only when d<right->npts-1 and
//
if(d<right->npts-1)
{
backend.bgntfan();
// backend.tmeshvert(& top->pts[1]);
OPT_OUTVERT(top->pts[1], backend);
for(i=d; i< right->npts; i++)
{
// backend.tmeshvert(& right->pts[i]);
OPT_OUTVERT(right->pts[i], backend);
}
backend.endtfan();
}
backend.bgntfan();
// backend.tmeshvert(& bot->pts[bot->npts-2]);
OPT_OUTVERT( bot->pts[bot->npts-2], backend);
for(i=0; i<=d; i++)
{
// backend.tmeshvert(& right->pts[i]);
OPT_OUTVERT(right->pts[i], backend);
}
// backend.tmeshvert(& top->pts[1]);
OPT_OUTVERT(top->pts[1], backend);
backend.endtfan();
topd_left = top->npts-2;
topd_right = 1; //topd_left>= topd_right
botd_left = 1;
botd_right = bot->npts-2; //botd_left<= bot_dright
if(top->npts < bot->npts)
{
int delta=bot->npts - top->npts;
int u = delta/2;
botd_left = 1+ u;
botd_right = bot->npts-2-( delta-u);
if(botd_left >1)
{
backend.bgntfan();
// backend.tmeshvert(& top->pts[top->npts-2]);
OPT_OUTVERT(top->pts[top->npts-2], backend);
for(i=1; i<= botd_left; i++)
{
// backend.tmeshvert(& bot->pts[i]);
OPT_OUTVERT(bot->pts[i] , backend);
}
backend.endtfan();
}
if(botd_right < bot->npts-2)
{
backend.bgntfan();
OPT_OUTVERT(top->pts[1], backend);
for(i=botd_right; i<= bot->npts-2; i++)
OPT_OUTVERT(bot->pts[i], backend);
backend.endtfan();
}
}
else if(top->npts> bot->npts)
{
int delta=top->npts-bot->npts;
int u = delta/2;
topd_left = top->npts-2 - u;
topd_right = 1+delta-u;
if(topd_left < top->npts-2)
{
backend.bgntfan();
// backend.tmeshvert(& bot->pts[1]);
OPT_OUTVERT(bot->pts[1], backend);
for(i=topd_left; i<= top->npts-2; i++)
{
// backend.tmeshvert(& top->pts[i]);
OPT_OUTVERT(top->pts[i], backend);
}
backend.endtfan();
}
if(topd_right > 1)
{
backend.bgntfan();
OPT_OUTVERT(bot->pts[bot->npts-2], backend);
for(i=1; i<= topd_right; i++)
OPT_OUTVERT(top->pts[i], backend);
backend.endtfan();
}
}
if(topd_left <= topd_right)
return;
backend.bgnqstrip();
for(j=botd_left, i=topd_left; i>=topd_right; i--,j++)
{
// backend.tmeshvert(& top->pts[i]);
// backend.tmeshvert(& bot->pts[j]);
OPT_OUTVERT(top->pts[i], backend);
OPT_OUTVERT(bot->pts[j], backend);
}
backend.endqstrip();
}
}
}
static void triangulateRectCenter(int n_ulines, REAL* u_val,
int n_vlines, REAL* v_val,
Backend& backend)
{
// XXX this code was patched by Diego Santa Cruz <Diego.SantaCruz@epfl.ch>
// to fix a problem in which glMapGrid2f() was called with bad parameters.
// This has beens submitted to SGI but not integrated as of May 1, 2001.
if(n_ulines>1 && n_vlines>1) {
backend.surfgrid(u_val[0], u_val[n_ulines-1], n_ulines-1,
v_val[n_vlines-1], v_val[0], n_vlines-1);
backend.surfmesh(0,0,n_ulines-1,n_vlines-1);
}
return;
/*
for(i=0; i<n_vlines-1; i++)
{
backend.bgnqstrip();
for(j=0; j<n_ulines; j++)
{
trimVert.param[0] = u_val[j];
trimVert.param[1] = v_val[i+1];
backend.tmeshvert(& trimVert);
trimVert.param[1] = v_val[i];
backend.tmeshvert(& trimVert);
}
backend.endqstrip();
}
*/
}
//it works for top, bot, left ad right, you need ot select correct arguments
static void triangulateRectTopGen(Arc_ptr arc, int n_ulines, REAL* u_val, Real v, int dir, int is_u, Backend& backend)
{
if(is_u)
{
int i,k;
REAL* upper_val = (REAL*) malloc(sizeof(REAL) * arc->pwlArc->npts);
assert(upper_val);
if(dir)
{
for(k=0,i=arc->pwlArc->npts-1; i>=0; i--,k++)
{
upper_val[k] = arc->pwlArc->pts[i].param[0];
}
backend.evalUStrip(arc->pwlArc->npts, arc->pwlArc->pts[0].param[1],
upper_val,
n_ulines, v, u_val);
}
else
{
for(k=0,i=0; i<arc->pwlArc->npts; i++,k++)
{
upper_val[k] = arc->pwlArc->pts[i].param[0];
}
backend.evalUStrip(
n_ulines, v, u_val,
arc->pwlArc->npts, arc->pwlArc->pts[0].param[1], upper_val
);
}
free(upper_val);
return;
}
else //is_v
{
int i,k;
REAL* left_val = (REAL*) malloc(sizeof(REAL) * arc->pwlArc->npts);
assert(left_val);
if(dir)
{
for(k=0,i=arc->pwlArc->npts-1; i>=0; i--,k++)
{
left_val[k] = arc->pwlArc->pts[i].param[1];
}
backend.evalVStrip(arc->pwlArc->npts, arc->pwlArc->pts[0].param[0],
left_val,
n_ulines, v, u_val);
}
else
{
for(k=0,i=0; i<arc->pwlArc->npts; i++,k++)
{
left_val[k] = arc->pwlArc->pts[i].param[1];
}
backend.evalVStrip(
n_ulines, v, u_val,
arc->pwlArc->npts, arc->pwlArc->pts[0].param[0], left_val
);
}
free(left_val);
return;
}
//the following is a different version of the above code. If you comment
//the above code, the following code will still work. The reason to leave
//the folliwng code here is purely for testing purpose.
/*
int i,j;
PwlArc* parc = arc->pwlArc;
int d1 = parc->npts-1;
int d2 = 0;
TrimVertex trimVert;
trimVert.nuid = 0;//????
REAL* temp_u_val = u_val;
if(dir ==0) //have to reverse u_val
{
temp_u_val = (REAL*) malloc(sizeof(REAL) * n_ulines);
assert(temp_u_val);
for(i=0; i<n_ulines; i++)
temp_u_val[i] = u_val[n_ulines-1-i];
}
u_val = temp_u_val;
if(parc->npts > n_ulines)
{
d1 = n_ulines-1;
backend.bgntfan();
if(is_u){
trimVert.param[0] = u_val[0];
trimVert.param[1] = v;
}
else
{
trimVert.param[1] = u_val[0];
trimVert.param[0] = v;
}
backend.tmeshvert(& trimVert);
for(i=d1; i< parc->npts; i++)
backend.tmeshvert(& parc->pts[i]);
backend.endtfan();
}
else if(parc->npts < n_ulines)
{
d2 = n_ulines-parc->npts;
backend.bgntfan();
backend.tmeshvert(& parc->pts[parc->npts-1]);
for(i=0; i<= d2; i++)
{
if(is_u){
trimVert.param[0] = u_val[i];
trimVert.param[1] = v;
}
else
{
trimVert.param[1] = u_val[i];
trimVert.param[0] = v;
}
backend.tmeshvert(&trimVert);
}
backend.endtfan();
}
if(d1>0){
backend.bgnqstrip();
for(i=d1, j=d2; i>=0; i--, j++)
{
backend.tmeshvert(& parc->pts[i]);
if(is_u){
trimVert.param[0] = u_val[j];
trimVert.param[1] = v;
}
else{
trimVert.param[1] = u_val[j];
trimVert.param[0] = v;
}
backend.tmeshvert(&trimVert);
}
backend.endqstrip();
}
if(dir == 0) //temp_u_val was mallocated
free(temp_u_val);
*/
}
//n_ulines is the number of ulines inside, and n_vlines is the number of vlines
//inside, different from meanings elsewhere!!!
static void triangulateRectGen(Arc_ptr loop, int n_ulines, int n_vlines, Backend& backend)
{
int i;
//we know the loop is a rectangle, but not sure which is top
Arc_ptr top, bot, left, right;
if(equalRect(loop->tail()[1] , loop->head()[1]))
{
if(loop->tail()[1] > loop->prev->prev->tail()[1])
{
top = loop;
}
else{
top = loop->prev->prev;
}
}
else
{
if(loop->tail()[0] > loop->prev->prev->tail()[0])
{
//loop is the right arc
top = loop->next;
}
else
{
top = loop->prev;
}
}
left = top->next;
bot = left->next;
right= bot->next;
#ifdef COUNT_TRIANGLES
num_triangles += loop->pwlArc->npts +
left->pwlArc->npts +
bot->pwlArc->npts +
right->pwlArc->npts
+ 2*n_ulines + 2*n_vlines
-8;
num_quads += (n_ulines-1)*(n_vlines-1);
#endif
/*
backend.surfgrid(left->tail()[0], right->tail()[0], n_ulines+1,
top->tail()[1], bot->tail()[1], n_vlines+1);
// if(n_ulines>1 && n_vlines>1)
backend.surfmesh(0,0,n_ulines+1,n_vlines+1);
return;
*/
REAL* u_val=(REAL*) malloc(sizeof(REAL)*n_ulines);
assert(u_val);
REAL* v_val=(REAL*)malloc(sizeof(REAL) * n_vlines);
assert(v_val);
REAL u_stepsize = (right->tail()[0] - left->tail()[0])/( (REAL) n_ulines+1);
REAL v_stepsize = (top->tail()[1] - bot->tail()[1])/( (REAL) n_vlines+1);
Real temp=left->tail()[0]+u_stepsize;
for(i=0; i<n_ulines; i++)
{
u_val[i] = temp;
temp += u_stepsize;
}
temp = bot->tail()[1] + v_stepsize;
for(i=0; i<n_vlines; i++)
{
v_val[i] = temp;
temp += v_stepsize;
}
triangulateRectTopGen(top, n_ulines, u_val, v_val[n_vlines-1], 1,1, backend);
triangulateRectTopGen(bot, n_ulines, u_val, v_val[0], 0, 1, backend);
triangulateRectTopGen(left, n_vlines, v_val, u_val[0], 1, 0, backend);
triangulateRectTopGen(right, n_vlines, v_val, u_val[n_ulines-1], 0,0, backend);
//triangulate the center
triangulateRectCenter(n_ulines, u_val, n_vlines, v_val, backend);
free(u_val);
free(v_val);
}
/**********for reading newtess_flag from a file**********/
#ifdef USE_READ_FLAG
static Int read_flag(char* name)
{
Int ret;
FILE* fp = fopen(name, "r");
if(fp == NULL)
{
fprintf(stderr, "can't open file %s\n", name);
exit(1);
}
fscanf(fp, "%i", &ret);
fclose(fp);
return ret;
}
#endif
/***********nextgen tess****************/
#include "sampleMonoPoly.h"
directedLine* arcToDLine(Arc_ptr arc)
{
int i;
Real vert[2];
directedLine* ret;
sampledLine* sline = new sampledLine(arc->pwlArc->npts);
for(i=0; i<arc->pwlArc->npts; i++)
{
vert[0] = arc->pwlArc->pts[i].param[0];
vert[1] = arc->pwlArc->pts[i].param[1];
sline->setPoint(i, vert);
}
ret = new directedLine(INCREASING, sline);
return ret;
}
/*an pwlArc may not be a straight line*/
directedLine* arcToMultDLines(directedLine* original, Arc_ptr arc)
{
directedLine* ret = original;
int is_linear = 0;
if(arc->pwlArc->npts == 2 )
is_linear = 1;
else if(area(arc->pwlArc->pts[0].param, arc->pwlArc->pts[1].param, arc->pwlArc->pts[arc->pwlArc->npts-1].param) == 0.0)
is_linear = 1;
if(is_linear)
{
directedLine *dline = arcToDLine(arc);
if(ret == NULL)
ret = dline;
else
ret->insert(dline);
return ret;
}
else /*not linear*/
{
for(Int i=0; i<arc->pwlArc->npts-1; i++)
{
Real vert[2][2];
vert[0][0] = arc->pwlArc->pts[i].param[0];
vert[0][1] = arc->pwlArc->pts[i].param[1];
vert[1][0] = arc->pwlArc->pts[i+1].param[0];
vert[1][1] = arc->pwlArc->pts[i+1].param[1];
sampledLine *sline = new sampledLine(2, vert);
directedLine *dline = new directedLine(INCREASING, sline);
if(ret == NULL)
ret = dline;
else
ret->insert(dline);
}
return ret;
}
}
directedLine* arcLoopToDLineLoop(Arc_ptr loop)
{
directedLine* ret;
if(loop == NULL)
return NULL;
ret = arcToMultDLines(NULL, loop);
//ret->printSingle();
for(Arc_ptr temp = loop->next; temp != loop; temp = temp->next){
ret = arcToMultDLines(ret, temp);
//ret->printSingle();
}
return ret;
}
/*
void Slicer::evalRBArray(rectBlockArray* rbArray, gridWrap* grid)
{
TrimVertex *trimVert = (TrimVertex*)malloc(sizeof(TrimVertex));
trimVert -> nuid = 0;//????
Real* u_values = grid->get_u_values();
Real* v_values = grid->get_v_values();
Int i,j,k,l;
for(l=0; l<rbArray->get_n_elements(); l++)
{
rectBlock* block = rbArray->get_element(l);
for(k=0, i=block->get_upGridLineIndex(); i>block->get_lowGridLineIndex(); i--, k++)
{
backend.bgnqstrip();
for(j=block->get_leftIndices()[k+1]; j<= block->get_rightIndices()[k+1]; j++)
{
trimVert->param[0] = u_values[j];
trimVert->param[1] = v_values[i];
backend.tmeshvert(trimVert);
trimVert->param[1] = v_values[i-1];
backend.tmeshvert(trimVert);
}
backend.endqstrip();
}
}
free(trimVert);
}
*/
void Slicer::evalRBArray(rectBlockArray* rbArray, gridWrap* grid)
{
Int i,j,k;
Int n_vlines=grid->get_n_vlines();
//the reason to switch the position of v_max and v_min is because of the
//the orientation problem. glEvalMesh generates quad_strip clockwise, but
//we need counter-clockwise.
backend.surfgrid(grid->get_u_min(), grid->get_u_max(), grid->get_n_ulines()-1,
grid->get_v_max(), grid->get_v_min(), n_vlines-1);
for(j=0; j<rbArray->get_n_elements(); j++)
{
rectBlock* block = rbArray->get_element(j);
Int low = block->get_lowGridLineIndex();
Int high = block->get_upGridLineIndex();
for(k=0, i=high; i>low; i--, k++)
{
backend.surfmesh(block->get_leftIndices()[k+1], n_vlines-1-i, block->get_rightIndices()[k+1]-block->get_leftIndices()[k+1], 1);
}
}
}
void Slicer::evalStream(primStream* pStream)
{
Int i,j,k;
k=0;
/* TrimVertex X;*/
TrimVertex *trimVert =/*&X*/ (TrimVertex*)malloc(sizeof(TrimVertex));
trimVert -> nuid = 0;//???
Real* vertices = pStream->get_vertices(); //for efficiency
for(i=0; i<pStream->get_n_prims(); i++)
{
//ith primitive has #vertices = lengths[i], type=types[i]
switch(pStream->get_type(i)){
case PRIMITIVE_STREAM_FAN:
backend.bgntfan();
for(j=0; j<pStream->get_length(i); j++)
{
trimVert->param[0] = vertices[k];
trimVert->param[1] = vertices[k+1];
backend.tmeshvert(trimVert);
// backend.tmeshvert(vertices[k], vertices[k+1]);
k += 2;
}
backend.endtfan();
break;
default:
fprintf(stderr, "evalStream: not implemented yet\n");
exit(1);
}
}
free(trimVert);
}
void Slicer::slice_new(Arc_ptr loop)
{
//count++;
//if(count == 78) count=1;
//printf("count=%i\n", count);
//if( ! (4<= count && count <=4)) return;
Int num_ulines;
Int num_vlines;
Real uMin, uMax, vMin, vMax;
Real mydu, mydv;
uMin = uMax = loop->tail()[0];
vMin = vMax = loop->tail()[1];
mydu = (du>0)? du: -du;
mydv = (dv>0)? dv: -dv;
for(Arc_ptr jarc=loop->next; jarc != loop; jarc = jarc->next)
{
if(jarc->tail()[0] < uMin)
uMin = jarc->tail()[0];
if(jarc->tail()[0] > uMax)
uMax = jarc->tail()[0];
if(jarc->tail()[1] < vMin)
vMin = jarc->tail()[1];
if(jarc->tail()[1] > vMax)
vMax = jarc->tail()[1];
}
if (uMax == uMin)
return; // prevent divide-by-zero. Jon Perry. 17 June 2002
if(mydu > uMax - uMin)
num_ulines = 2;
else
{
num_ulines = 3 + (Int) ((uMax-uMin)/mydu);
}
if(mydv>=vMax-vMin)
num_vlines = 2;
else
{
num_vlines = 2+(Int)((vMax-vMin)/mydv);
}
Int isRect = is_rect(loop);
if(isRect && (num_ulines<=2 || num_vlines<=2))
{
if(vlinear)
triangulateRect(loop, backend, 1, ulinear, vlinear);
else if(ulinear)
triangulateRect(loop, backend, -1, ulinear, vlinear);
else
triangulateRect(loop, backend, 0, ulinear, vlinear);
}
else if(isRect)
{
triangulateRectGen(loop, num_ulines-2, num_vlines-2, backend);
}
else if( (num_ulines<=2 || num_vlines <=2) && ulinear)
{
monoTriangulationFunBackend(loop, compV2InY, &backend);
}
else if( (!ulinear) && (!vlinear) && (num_ulines == 2) && (num_vlines > 2))
{
monoTriangulationFunBackend(loop, compV2InY, &backend);
}
else
{
directedLine* poly = arcLoopToDLineLoop(loop);
gridWrap grid(num_ulines, num_vlines, uMin, uMax, vMin, vMax);
primStream pStream(20, 20);
rectBlockArray rbArray(20);
sampleMonoPoly(poly, &grid, ulinear, vlinear, &pStream, &rbArray);
evalStream(&pStream);
evalRBArray(&rbArray, &grid);
#ifdef COUNT_TRIANGLES
num_triangles += pStream.num_triangles();
num_quads += rbArray.num_quads();
#endif
poly->deleteSinglePolygonWithSline();
}
#ifdef COUNT_TRIANGLES
printf("num_triangles=%i\n", num_triangles);
printf("num_quads = %i\n", num_quads);
#endif
}
void Slicer::slice(Arc_ptr loop)
{
#ifdef USE_READ_FLAG
if(read_flag("flagFile"))
slice_new(loop);
else
slice_old(loop);
#else
slice_new(loop);
#endif
}
Slicer::Slicer( Backend &b )
: CoveAndTiler( b ), Mesher( b ), backend( b )
{
ulinear = 0;
vlinear = 0;
}
Slicer::~Slicer()
{
}
void
Slicer::setisolines( int x )
{
isolines = x;
}
void
Slicer::setstriptessellation( REAL x, REAL y )
{
assert(x > 0 && y > 0);
du = x;
dv = y;
setDu( du );
}
void
Slicer::slice_old( Arc_ptr loop )
{
loop->markverts();
Arc_ptr extrema[4];
loop->getextrema( extrema );
unsigned int npts = loop->numpts();
TrimRegion::init( npts, extrema[0] );
Mesher::init( npts );
long ulines = uarray.init( du, extrema[1], extrema[3] );
//printf("ulines = %i\n", ulines);
Varray varray;
long vlines = varray.init( dv, extrema[0], extrema[2] );
//printf("vlines = %i\n", vlines);
long botv = 0;
long topv;
TrimRegion::init( varray.varray[botv] );
getGridExtent( &extrema[0]->pwlArc->pts[0], &extrema[0]->pwlArc->pts[0] );
for( long quad=0; quad<varray.numquads; quad++ ) {
backend.surfgrid( uarray.uarray[0],
uarray.uarray[ulines-1],
ulines-1,
varray.vval[quad],
varray.vval[quad+1],
varray.voffset[quad+1] - varray.voffset[quad] );
for( long i=varray.voffset[quad]+1; i <= varray.voffset[quad+1]; i++ ) {
topv = botv++;
advance( topv - varray.voffset[quad],
botv - varray.voffset[quad],
varray.varray[botv] );
if( i == vlines )
getPts( extrema[2] );
else
getPts( backend );
getGridExtent();
if( isolines ) {
outline();
} else {
if( canTile() )
coveAndTile();
else
mesh();
}
}
}
}
void
Slicer::outline( void )
{
GridTrimVertex upper, lower;
Hull::init( );
backend.bgnoutline();
while( (nextupper( &upper )) ) {
if( upper.isGridVert() )
backend.linevert( upper.g );
else
backend.linevert( upper.t );
}
backend.endoutline();
backend.bgnoutline();
while( (nextlower( &lower )) ) {
if( lower.isGridVert() )
backend.linevert( lower.g );
else
backend.linevert( lower.t );
}
backend.endoutline();
}
void
Slicer::outline( Arc_ptr jarc )
{
jarc->markverts();
if( jarc->pwlArc->npts >= 2 ) {
backend.bgnoutline();
for( int j = jarc->pwlArc->npts-1; j >= 0; j-- )
backend.linevert( &(jarc->pwlArc->pts[j]) );
backend.endoutline();
}
}