blob: 8bccc60361ae813277c791e88d7bd9e3ac05a590 [file] [log] [blame]
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
** $Date: 2012/03/29 17:22:17 $ $Revision: 1.1.1.1 $
*/
/*
** $Header: /cvs/bao-parsec/pkgs/libs/mesa/src/src/glu/sgi/libnurbs/nurbtess/partitionY.cc,v 1.1.1.1 2012/03/29 17:22:17 uid42307 Exp $
*/
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "zlassert.h"
#include "partitionY.h"
#include "searchTree.h"
#include "quicksort.h"
#include "polyUtil.h"
#define max(a,b) ((a>b)? a:b)
#define min(a,b) ((a>b)? b:a)
/*retrurn
*-1: if A < B (Ya<Yb) || (Ya==Yb)
* 0: if A == B
* 1: if A>B
*/
static Int compVertInY(Real A[2], Real B[2])
{
if( (A[1] < B[1]) || (A[1]==B[1] && A[0]<B[0]))
return -1;
else if
( A[1] == B[1] && A[0] == B[0]) return 0;
else
return 1;
}
/*v is a vertex: the head of en edge,
*e is an edge,
*return 1 if e is below v: assume v1 and v2 are the two endpoints of e:
* v1<= v, v2<=v.
*/
Int isBelow(directedLine *v, directedLine *e)
{
Real* vert = v->head();
if( compVertInY(e->head(), vert) != 1
&& compVertInY(e->tail(), vert) != 1
)
return 1;
else
return 0;
}
/*v is a vertex: the head of en edge,
*e is an edge,
*return 1 if e is below v: assume v1 and v2 are the two endpoints of e:
* v1>= v, v2>=v.
*/
Int isAbove(directedLine *v, directedLine *e)
{
Real* vert = v->head();
if( compVertInY(e->head(), vert) != -1
&& compVertInY(e->tail(), vert) != -1
)
return 1;
else
return 0;
}
Int isCusp(directedLine *v)
{
Real *A=v->getPrev()->head();
Real *B=v->head();
Real *C=v->tail();
if(A[1] < B[1] && B[1] < C[1])
return 0;
else if(A[1] > B[1] && B[1] > C[1])
return 0;
else if(A[1] < B[1] && C[1] < B[1])
return 1;
else if(A[1] > B[1] && C[1] > B[1])
return 1;
if(isAbove(v, v) && isAbove(v, v->getPrev()) ||
isBelow(v, v) && isBelow(v, v->getPrev()))
return 1;
else
return 0;
}
/*crossproduct is strictly less than 0*/
Int isReflex(directedLine *v)
{
Real* A = v->getPrev()->head();
Real* B = v->head();
Real* C = v->tail();
Real Bx,By, Cx, Cy;
Bx = B[0] - A[0];
By = B[1] - A[1];
Cx = C[0] - A[0];
Cy = C[1] - A[1];
if(Bx*Cy - Cx*By < 0) return 1;
else return 0;
}
/*return
*0: not-cusp
*1: interior cusp
*2: exterior cusp
*/
Int cuspType(directedLine *v)
{
if(! isCusp(v)) return 0;
else if(isReflex(v)) return 1;
else
return 2;
}
sweepRange* sweepRangeMake(directedLine* left, Int leftType,
directedLine* right, Int rightType)
{
sweepRange* ret = (sweepRange*)malloc(sizeof(sweepRange));
assert(ret);
ret->left = left;
ret->leftType = leftType;
ret->right = right;
ret->rightType = rightType;
return ret;
}
void sweepRangeDelete(sweepRange* range)
{
free(range);
}
Int sweepRangeEqual(sweepRange* src1, sweepRange* src2)
{
Int leftEqual;
Int rightEqual;
/*The case when both are vertices should not happen*/
assert(! (src1->leftType == 0 && src2->leftType == 0));
if(src1->leftType == 0 && src2->leftType == 1){
if(src1->left == src2->left ||
src1->left->getPrev() == src2->left
)
leftEqual = 1;
else
leftEqual = 0;
}
else if(src1->leftType == 1 && src2->leftType == 1){
if(src1->left == src2->left)
leftEqual = 1;
else
leftEqual = 0;
}
else /*src1->leftType == 1 && src2->leftType == 0*/{
if(src1->left == src2->left ||
src1->left == src2->left->getPrev()
)
leftEqual = 1;
else
leftEqual = 0;
}
/*the same thing for right*/
/*The case when both are vertices should not happen*/
assert(! (src1->rightType == 0 && src2->rightType == 0));
if(src1->rightType == 0 && src2->rightType == 1){
if(src1->right == src2->right ||
src1->right->getPrev() == src2->right
)
rightEqual = 1;
else
rightEqual = 0;
}
else if(src1->rightType == 1 && src2->rightType == 1){
if(src1->right == src2->right)
rightEqual = 1;
else
rightEqual = 0;
}
else /*src1->rightType == 1 && src2->rightType == 0*/{
if(src1->right == src2->right ||
src1->right == src2->right->getPrev()
)
rightEqual = 1;
else
rightEqual = 0;
}
return (leftEqual == 1 || rightEqual == 1);
}
/*given (x_1, y_1) and (x_2, y_2), and y
*return x such that (x,y) is on the line
*/
inline/*static*/ Real intersectHoriz(Real x1, Real y1, Real x2, Real y2, Real y)
{
return ((y2==y1)? (x1+x2)*Real(0.5) : x1 + ((y-y1)/(y2-y1)) * (x2-x1));
/*
if(y2 == y1) return (x1+x2)*0.5;
else return x1 + ((y-y1)/(y2-y1)) * (x2-x1);
*/
}
/*compare two edges of a polygon.
*edge A < edge B if there is a horizontal line so that the intersection
*with A is to the left of the intersection with B.
*This function is used in sweepY for the dynamic search tree insertion to
*order the edges.
* Implementation: (x_1,y_1) and (x_2, y_2)
*/
static Int compEdges(directedLine *e1, directedLine *e2)
{
Real* head1 = e1->head();
Real* tail1 = e1->tail();
Real* head2 = e2->head();
Real* tail2 = e2->tail();
/*
Real h10 = head1[0];
Real h11 = head1[1];
Real t10 = tail1[0];
Real t11 = tail1[1];
Real h20 = head2[0];
Real h21 = head2[1];
Real t20 = tail2[0];
Real t21 = tail2[1];
*/
Real e1_Ymax, e1_Ymin, e2_Ymax, e2_Ymin;
/*
if(h11>t11) {
e1_Ymax= h11;
e1_Ymin= t11;
}
else{
e1_Ymax = t11;
e1_Ymin = h11;
}
if(h21>t21) {
e2_Ymax= h21;
e2_Ymin= t21;
}
else{
e2_Ymax = t21;
e2_Ymin = h21;
}
*/
if(head1[1]>tail1[1]) {
e1_Ymax= head1[1];
e1_Ymin= tail1[1];
}
else{
e1_Ymax = tail1[1];
e1_Ymin = head1[1];
}
if(head2[1]>tail2[1]) {
e2_Ymax= head2[1];
e2_Ymin= tail2[1];
}
else{
e2_Ymax = tail2[1];
e2_Ymin = head2[1];
}
/*Real e1_Ymax = max(head1[1], tail1[1]);*/ /*max(e1->head()[1], e1->tail()[1]);*/
/*Real e1_Ymin = min(head1[1], tail1[1]);*/ /*min(e1->head()[1], e1->tail()[1]);*/
/*Real e2_Ymax = max(head2[1], tail2[1]);*/ /*max(e2->head()[1], e2->tail()[1]);*/
/*Real e2_Ymin = min(head2[1], tail2[1]);*/ /*min(e2->head()[1], e2->tail()[1]);*/
Real Ymax = min(e1_Ymax, e2_Ymax);
Real Ymin = max(e1_Ymin, e2_Ymin);
Real y = Real(0.5)*(Ymax + Ymin);
/* Real x1 = intersectHoriz(e1->head()[0], e1->head()[1], e1->tail()[0], e1->tail()[1], y);
Real x2 = intersectHoriz(e2->head()[0], e2->head()[1], e2->tail()[0], e2->tail()[1], y);
*/
/*
Real x1 = intersectHoriz(h10, h11, t10, t11, y);
Real x2 = intersectHoriz(h20, h21, t20, t21, y);
*/
Real x1 = intersectHoriz(head1[0], head1[1], tail1[0], tail1[1], y);
Real x2 = intersectHoriz(head2[0], head2[1], tail2[0], tail2[1], y);
if(x1<= x2) return -1;
else return 1;
}
/*used by sort precedures
*/
static Int compInY(directedLine* v1, directedLine* v2)
{
return v1->compInY(v2);
}
void findDiagonals(Int total_num_edges, directedLine** sortedVertices, sweepRange** ranges, Int& num_diagonals, directedLine** diagonal_vertices)
{
Int i,j,k;
k=0;
for(i=0; i<total_num_edges; i++)
{
directedLine* vert =sortedVertices[i];
directedLine* thisEdge = vert;
directedLine* prevEdge = vert->getPrev();
/*
printf("find i=%i\n", i);
printf("the vertex is\n");
vert->printSingle();
*/
if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge) && compEdges(prevEdge, thisEdge)<0)
{
/*this is an upward interior cusp*/
diagonal_vertices[k++] = vert;
for(j=i+1; j<total_num_edges; j++)
if(sweepRangeEqual(ranges[i], ranges[j]))
{
diagonal_vertices[k++] = sortedVertices[j];
break;
}
assert(j<total_num_edges);
}
else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge) && compEdges(prevEdge, thisEdge)>0)
{
/*this is an downward interior cusp*/
diagonal_vertices[k++] = vert;
for(j=i-1; j>=0; j--)
if(sweepRangeEqual(ranges[i], ranges[j]))
{
diagonal_vertices[k++] = sortedVertices[j];
break;
}
/* printf("j=%i\n", j);*/
assert(j>=0);
}
}
num_diagonals = k/2;
}
/*get rid of repeated diagonlas so that each diagonal appears only once in the array
*/
Int deleteRepeatDiagonals(Int num_diagonals, directedLine** diagonal_vertices, directedLine** new_vertices)
{
Int i,k;
Int j,l;
Int index;
index=0;
for(i=0,k=0; i<num_diagonals; i++, k+=2)
{
Int isRepeated=0;
/*check the diagonla (diagonal_vertice[k], diagonal_vertices[k+1])
*is repeated or not
*/
for(j=0,l=0; j<index; j++, l+=2)
{
if(
(diagonal_vertices[k] == new_vertices[l] &&
diagonal_vertices[k+1] == new_vertices[l+1]
)
||
(
diagonal_vertices[k] == new_vertices[l+1] &&
diagonal_vertices[k+1] == new_vertices[l]
)
)
{
isRepeated=1;
break;
}
}
if(! isRepeated)
{
new_vertices[index+index] = diagonal_vertices[k];
new_vertices[index+index+1] = diagonal_vertices[k+1];
index++;
}
}
return index;
}
/*for debug only*/
directedLine** DBGfindDiagonals(directedLine *polygons, Int& num_diagonals)
{
Int total_num_edges = 0;
directedLine** array = polygons->toArrayAllPolygons(total_num_edges);
quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY);
sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * total_num_edges);
assert(ranges);
sweepY(total_num_edges, array, ranges);
directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges);
assert(diagonal_vertices);
findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices);
num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);
return diagonal_vertices;
}
/*partition into Y-monotone polygons*/
directedLine* partitionY(directedLine *polygons, sampledLine **retSampledLines)
{
Int total_num_edges = 0;
directedLine** array = polygons->toArrayAllPolygons(total_num_edges);
quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY);
sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * (total_num_edges));
assert(ranges);
sweepY(total_num_edges, array, ranges);
/*the diagonal vertices are stored as:
*v0-v1: 1st diagonal
*v2-v3: 2nd diagonal
*v5-v5: 3rd diagonal
*...
*/
Int num_diagonals;
/*number diagonals is < total_num_edges*total_num_edges*/
directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges*2/*total_num_edges*/);
assert(diagonal_vertices);
findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices);
directedLine* ret_polygons = polygons;
sampledLine* newSampledLines = NULL;
Int i,k;
num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);
Int *removedDiagonals=(Int*)malloc(sizeof(Int) * num_diagonals);
for(i=0; i<num_diagonals; i++)
removedDiagonals[i] = 0;
for(i=0,k=0; i<num_diagonals; i++,k+=2)
{
directedLine* v1=diagonal_vertices[k];
directedLine* v2=diagonal_vertices[k+1];
directedLine* ret_p1;
directedLine* ret_p2;
/*we ahve to determine whether v1 and v2 belong to the same polygon before
*their structure are modified by connectDiagonal().
*/
/*
directedLine *root1 = v1->findRoot();
directedLine *root2 = v2->findRoot();
assert(root1);
assert(root2);
*/
directedLine* root1 = v1->rootLinkFindRoot();
directedLine* root2 = v2->rootLinkFindRoot();
if(root1 != root2)
{
removedDiagonals[i] = 1;
sampledLine* generatedLine;
v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);
newSampledLines = generatedLine->insert(newSampledLines);
/*
ret_polygons = ret_polygons->cutoffPolygon(root1);
ret_polygons = ret_polygons->cutoffPolygon(root2);
ret_polygons = ret_p1->insertPolygon(ret_polygons);
root1->rootLinkSet(ret_p1);
root2->rootLinkSet(ret_p1);
ret_p1->rootLinkSet(NULL);
ret_p2->rootLinkSet(ret_p1);
*/
ret_polygons = ret_polygons->cutoffPolygon(root2);
root2->rootLinkSet(root1);
ret_p1->rootLinkSet(root1);
ret_p2->rootLinkSet(root1);
/*now that we have connected the diagonal v1 and v2,
*we have to check those unprocessed diagonals which
*have v1 or v2 as an end point. Notice that the head of v1
*has the same coodinates as the head of v2->prev, and the head of
*v2 has the same coordinate as the head of v1->prev.
*Suppose these is a diagonal (v1, x). If (v1,x) is still a valid
*diagonal, then x should be on the left hand side of the directed line: *v1->prev->head -- v1->head -- v1->tail. Otherwise, (v1,x) should be
*replaced by (v2->prev, x), that is, x is on the left of
* v2->prev->prev->head, v2->prev->head, v2->prev->tail.
*/
Int ii, kk;
for(ii=0, kk=0; ii<num_diagonals; ii++, kk+=2)
if( removedDiagonals[ii]==0)
{
directedLine* d1=diagonal_vertices[kk];
directedLine* d2=diagonal_vertices[kk+1];
/*check d1, and replace diagonal_vertices[kk] if necessary*/
if(d1 == v1) {
/*check if d2 is to left of v1->prev->head:v1->head:v1->tail*/
if(! pointLeft2Lines(v1->getPrev()->head(),
v1->head(), v1->tail(), d2->head()))
{
/*
assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
v2->getPrev()->head(),
v2->getPrev()->tail(), d2->head()));
*/
diagonal_vertices[kk] = v2->getPrev();
}
}
if(d1 == v2) {
/*check if d2 is to left of v2->prev->head:v2->head:v2->tail*/
if(! pointLeft2Lines(v2->getPrev()->head(),
v2->head(), v2->tail(), d2->head()))
{
/*
assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
v1->getPrev()->head(),
v1->getPrev()->tail(), d2->head()));
*/
diagonal_vertices[kk] = v1->getPrev();
}
}
/*check d2 and replace diagonal_vertices[k+1] if necessary*/
if(d2 == v1) {
/*check if d1 is to left of v1->prev->head:v1->head:v1->tail*/
if(! pointLeft2Lines(v1->getPrev()->head(),
v1->head(), v1->tail(), d1->head()))
{
/* assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
v2->getPrev()->head(),
v2->getPrev()->tail(), d1->head()));
*/
diagonal_vertices[kk+1] = v2->getPrev();
}
}
if(d2 == v2) {
/*check if d1 is to left of v2->prev->head:v2->head:v2->tail*/
if(! pointLeft2Lines(v2->getPrev()->head(),
v2->head(), v2->tail(), d1->head()))
{
/* assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
v1->getPrev()->head(),
v1->getPrev()->tail(), d1->head()));
*/
diagonal_vertices[kk+1] = v1->getPrev();
}
}
}
}/*end if (root1 not equal to root 2)*/
}
/*second pass, now all diagoals should belong to the same polygon*/
for(i=0,k=0; i<num_diagonals; i++, k += 2)
if(removedDiagonals[i] == 0)
{
directedLine* v1=diagonal_vertices[k];
directedLine* v2=diagonal_vertices[k+1];
directedLine* ret_p1;
directedLine* ret_p2;
/*we ahve to determine whether v1 and v2 belong to the same polygon before
*their structure are modified by connectDiagonal().
*/
directedLine *root1 = v1->findRoot();
/*
directedLine *root2 = v2->findRoot();
assert(root1);
assert(root2);
assert(root1 == root2);
*/
sampledLine* generatedLine;
v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);
newSampledLines = generatedLine->insert(newSampledLines);
ret_polygons = ret_polygons->cutoffPolygon(root1);
ret_polygons = ret_p1->insertPolygon(ret_polygons);
ret_polygons = ret_p2->insertPolygon(ret_polygons);
for(Int j=i+1; j<num_diagonals; j++)
{
if(removedDiagonals[j] ==0)
{
directedLine* temp1=diagonal_vertices[2*j];
directedLine* temp2=diagonal_vertices[2*j+1];
if(temp1==v1 || temp1==v2 || temp2==v1 || temp2==v2)
if(! temp1->samePolygon(temp1, temp2))
{
/*if temp1 and temp2 are in different polygons,
*then one of them must be v1 or v2.
*/
assert(temp1==v1 || temp1 == v2 || temp2==v1 || temp2 ==v2);
if(temp1==v1)
{
diagonal_vertices[2*j] = v2->getPrev();
}
if(temp2==v1)
{
diagonal_vertices[2*j+1] = v2->getPrev();
}
if(temp1==v2)
{
diagonal_vertices[2*j] = v1->getPrev();
}
if(temp2==v2)
{
diagonal_vertices[2*j+1] = v1->getPrev();
}
}
}
}
}
/*clean up spaces*/
free(array);
free(ranges);
free(diagonal_vertices);
free(removedDiagonals);
*retSampledLines = newSampledLines;
return ret_polygons;
}
/*given a set of simple polygons where the interior
*is decided by left-hand principle,
*return a range (sight) for each vertex. This is called
*Trapezoidalization.
*/
void sweepY(Int nVertices, directedLine** sortedVertices, sweepRange** ret_ranges)
{
Int i;
/*for each vertex in the sorted list, update the binary search tree.
*and store the range information for each vertex.
*/
treeNode* searchTree = NULL;
for(i=0; i<nVertices;i++)
{
directedLine* vert = sortedVertices[i];
directedLine* thisEdge = vert;
directedLine* prevEdge = vert->getPrev();
if(isBelow(vert, thisEdge) && isAbove(vert, prevEdge))
{
/*case 1: this < v < prev
*the polygon is going down at v, the interior is to
*the right hand side.
* find the edge to the right of thisEdge for right range.
* delete thisEdge
* insert prevEdge
*/
treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges);
assert(thisNode);
treeNode* succ = TreeNodeSuccessor(thisNode);
assert(succ);
searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);
searchTree = TreeNodeInsert(searchTree, TreeNodeMake(prevEdge), ( Int (*) (void *, void *))compEdges);
ret_ranges[i] = sweepRangeMake(vert, 0, (directedLine*) (succ->key), 1);
}
else if(isAbove(vert, thisEdge) && isBelow(vert, prevEdge))
{
/*case 2: this > v > prev
*the polygon is going up at v, the interior is to
*the left hand side.
* find the edge to the left of thisEdge for left range.
* delete prevEdge
* insert thisEdge
*/
treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges);
assert(prevNode);
treeNode* pred = TreeNodePredecessor(prevNode);
searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);
searchTree = TreeNodeInsert(searchTree, TreeNodeMake(thisEdge), ( Int (*) (void *, void *))compEdges);
ret_ranges[i] = sweepRangeMake((directedLine*)(pred->key), 1, vert, 0);
}
else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge))
{
/*case 3: insert both edges*/
treeNode* thisNode = TreeNodeMake(thisEdge);
treeNode* prevNode = TreeNodeMake(prevEdge);
searchTree = TreeNodeInsert(searchTree, thisNode, ( Int (*) (void *, void *))compEdges);
searchTree = TreeNodeInsert(searchTree, prevNode, ( Int (*) (void *, void *))compEdges);
if(compEdges(thisEdge, prevEdge)<0) /*interior cusp*/
{
treeNode* leftEdge = TreeNodePredecessor(thisNode);
treeNode* rightEdge = TreeNodeSuccessor(prevNode);
ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1,
(directedLine*) rightEdge->key, 1
);
}
else /*exterior cusp*/
{
ret_ranges[i] = sweepRangeMake( prevEdge, 1, thisEdge, 1);
}
}
else if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge))
{
/*case 4: delete both edges*/
treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges);
treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges);
if(compEdges(thisEdge, prevEdge)>0) /*interior cusp*/
{
treeNode* leftEdge = TreeNodePredecessor(prevNode);
treeNode* rightEdge = TreeNodeSuccessor(thisNode);
ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1,
(directedLine*) rightEdge->key, 1
);
}
else /*exterior cusp*/
{
ret_ranges[i] = sweepRangeMake( thisEdge, 1, prevEdge, 1);
}
searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);
searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);
}
else
{
fprintf(stderr,"error in partitionY.C, invalid case\n");
printf("vert is\n");
vert->printSingle();
printf("thisEdge is\n");
thisEdge->printSingle();
printf("prevEdge is\n");
prevEdge->printSingle();
exit(1);
}
}
/*finaly clean up space: delete the search tree*/
TreeNodeDeleteWholeTree(searchTree);
}